

Advanced Access Content System (AACS)

Pre-recorded Video Book

Intel Corporation

International Business Machines Corporation

Microsoft Corporation

Panasonic Corporation

Sony Corporation

Toshiba Corporation

The Walt Disney Company

Warner Bros.

Revision 0.953

Final

October 26, 2012

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page ii

This page is intentionally left blank.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page iii

Preface

Notice

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING

ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY

PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,

SPECIFICATION OR SAMPLE. IBM, Intel, Microsoft Corporation, Panasonic Corporation, Sony

Corporation, Toshiba Corporation, The Walt Disney Company and Warner Bros. disclaim all liability, including

liability for infringement of any proprietary rights, relating to use of information in this specification. No

license, express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

This document is subject to change under applicable license provisions.

Copyright © 2005-2012 by Intel Corporation, International Business Machines Corporation, Microsoft

Corporation, Panasonic Corporation, Sony Corporation, Toshiba Corporation, The Walt Disney Company, and

Warner Bros. Third-party brands and names are the property of their respective owners.

Intellectual Property

Implementation of this specification requires a license from AACS LA LLC.

Contact Information

Please address inquiries, feedback, and licensing requests to AACS LA LLC:

 Licensing inquiries and requests should be addressed to licensing@aacsla.com.

 Feedback on this specification should be addressed to comment@aacsla.com.

The URL for the AACS LA LLC web site is http://www.aacsla.com.

mailto:licensing@aacsla.com
mailto:comment@aacsla.com
http://www.aacsla.com/

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page iv

This page is intentionally left blank.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page v

Table of Contents

Notice .. iii

Intellectual Property .. iii

Contact Information .. iii

CHAPTER 1 INTRODUCTION ...1

1 INTRODUCTION ...1

1.1 Purpose and Scope ...1

1.2 Overview ...1

1.3 Organization of this Document ...3

1.4 References ...3

1.5 Document History ..3

1.6 Future Directions ...4

1.7 Notation ...4

1.8 Terminology ..4

1.9 Abbreviations and Acronyms ..4

CHAPTER 2 CONTENT REVOCATION ...5

2 INTRODUCTION ...5

2.1 Scope ..6

2.2 Content Signing infrastructure ...6

2.3 Content Hash Table ...6

2.4 Content Certificate ...7

2.5 Creating Content Certificate ... 10

2.6 Verifying Content Certificate .. 11

2.7 Content Revocation List (CRL) .. 12

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page vi

CHAPTER 3 CONTENT ENCRYPTION AND DECRYPTION 17

3 INTRODUCTION ... 17

3.1 Content Encryption (General) .. 17

3.2 Content Decryption (General) ... 18

3.3 Calculating the Volume Unique Keys ... 19

3.4 AACS Encryption on Pre-Recorded Media ... 19

3.5 AACS Decryption on Pre-Recorded Media ... 20

CHAPTER 4 SEQUENCE KEY BLOCK ... 21

4 INTRODUCTION ... 21

4.1 Sequence Key Block Principles ... 21

4.2 Calculation of the Media Key Variant Data .. 23
4.2.1 Sequence Keys ... 23
4.2.2 Sequence Key Block (SKB)... 23
4.2.2.1 Verify Media Key Record ... 24
4.2.2.2 Nonce Record .. 24
4.2.2.3 Calculate Variant Data Record .. 25
4.2.2.4 Conditionally Calculate Variant Data Record ... 26
4.2.2.5 End of Sequence Key Block Record ... 27

4.3 Calculation of the Media Key Variant from the Variant Data .. 28

CHAPTER 5 MANAGED COPY OF PRE-RECORDED CONTENT 29

5 INTRODUCTION ... 29

5.1 Managed Copy Machine Initiation ... 36

5.2 Connection Protocol ... 37

5.3 Managed Copy Account Transactions ... 37
5.3.1 Encapsulated Web Service Clients .. 37
5.3.2 Links to a Transaction Web Page .. 38
5.3.3 Use of AACS Object for Financial Transaction .. 38
5.3.4 Accessing the AACS Object .. 40

5.4 MCS Certificate .. 41

5.5 Managed Copy Messages ... 42
5.5.1 Perform Read Drive ... 42
5.5.2 Perform Read Drive Response ... 43
5.5.3 Request Offer ... 44

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page vii

5.5.4 Offer Response Creation .. 46
5.5.4.1 Creation of Cryptographic Signature of Managed Copy Offer Response 46
5.5.4.2 Offer Details .. 46
5.5.4.3 Deal Manifest .. 48
5.5.5 Offer Response Verification and Interpretation ... 48
5.5.5.1 Verification of Cryptographic Signature of Managed Copy Offer Response 48
5.5.5.2 Display of Managed Copy Offers .. 49
5.5.5.3 Giving Control to the MCM .. 50
5.5.6 Request Permission .. 51
5.5.7 Request Permission Response Creation ... 52
5.5.7.1 Request Permission Response Validation ... 53

5.6 Making a Managed Copy .. 53

5.7 Managed Copy Server ... 53

5.8 Informative Section: Components of a Managed Copy Architecture 54
5.8.1 The AACS Compliant Disc ... 54
5.8.2 The AACS Compliant Player... 54
5.8.3 The Managed Copy Machine ... 54
5.8.3.1 The Application Layer of the Managed Copy Machine .. 55
5.8.3.2 The AACS Layer of the Managed Copy Machine .. 55
5.8.4 MCOT ID Considerations .. 55
5.8.5 The MCOT Transcryptor ... 56

A APPENDIX MANAGED COPY OFFER XML SCHEMA 57

B APPENDIX MANAGED COPY PERMISSION XML SCHEMA 63

C APPENDIX MANAGED COPY WEB SERVICE DESCRIPTION 65

D DRIVE AUTHENTICATION SCHEMA .. 71

E DRIVE AUTHENTICATION WEB SERVICE DESCRIPTION (WSDL) 73

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page viii

This page is intentionally left blank.

Advanced Access Content System: Pre-recorded Video Book

 Revision 0.953 Page ix

List of Figures

Figure 1-1 – System Overview (Informative) .. 2

Figure 2-1 – Content Validation and Revocation Overview .. 5

Figure 2-2 – Content Signing Process ..11

Figure 3-1 – Encryption and Decryption Overview..17

Figure 4-1 – Example Sequence Key Block ...22

Figure 5-1 – Managed Copy Overview ..32

Figure 5-2 – Example of Managed Copy Message Flow ..34

Figure 5-3 – Flow Chart in the case Sticker Code is used ..35

Figure 5-4 –Example Use of performReadDrive Messages ...42

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page x

This page is intentionally left blank.

Advanced Access Content System: Pre-recorded Video Book

 Revision 0.953 Page xi

List of Tables

Table 2-1 – Content Certificate for Pre-recorded Video .. 8

Table 2-2 – Content Revocation List for Pre-recorded Video ..12

Table 2-3 – Revocation Record for Content Certificate ID ..14

Table 2-4 – Revocation Record for Managed Copy Server Certificate ID ...15

Table 2-5 – Recordable Media Revocation Record ..15

Table 4-1 – Verify Media Key Record Format ..24

Table 4-2 – Nonce Record Format ..24

Table 4-3 – Calculate Variant Data Record Format ..25

Table 4-4 – Conditionally Calculate Variant Data Record Format ...26

Table 4-5 – End of Sequence Key Block Record Format ..27

Table 5-1 –Managed Copy - Setting Data Elements...35

Table 5-2 –Managed Copy Server Certificate ..41

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page xii

This page is intentionally left blank.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 1

Chapter 1
Introduction

1 Introduction

1.1 Purpose and Scope

The Advanced Access Content System (AACS) specification defines an advanced, robust and renewable

method for protecting entertainment content, including high-definition audiovisual content. The specification is

organized into several “books”. The Introduction and Common Cryptographic Elements book defines

cryptographic procedures that are common among the various defined uses of the protection system. This

document (the Pre-recorded Video Book) specifies additional details for using the system to protect audiovisual

content distributed on pre-recorded (read-only) storage media. Specifications covering other storage types,

transmission media and formats are expected to be available in the future (see Section 1.6 below).

The use of this specification and access to the intellectual property and cryptographic materials required to

implement it will be the subject of a license. A license authority referred to as AACS LA LLC (hereafter

referred to as AACS LA) is responsible for establishing and administering the content protection system based,

in part, on this specification.

1.2 Overview

In addition to the general objectives described in the Introduction and Common Cryptographic Elements book

of this specification, the use of AACS for protecting Pre-recorded Video Content was designed to meet the

following specific criteria:

 Provide robust protection for both off-line playback and optional enhanced uses enabled via on-line

connection.

Provide for extended and extensible usage (e.g. jukebox storage, pay for copy).

Independent of physical storage format to the degree possible.

Compliant players can authenticate that content came from an authorized, Licensed Replicator.

Figure 1-1 presents an informative overview of the system, as used for protecting Pre-recorded high-definition

Video Content. Actual details and requirements of system operation are described in subsequent chapters.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 2

Licensed

Player

Licensing Entity

Licensed

Replicator

Content Owner

Device revocation data (MKB)

Forensic data (SKB)

Content revocation data (CRL)

Content certificate

Secret keys

Device Keys

Entity public keys

Content,

Usage rules

Encrypted content

Usage rules, bound to content

Content certificate

Content hash

Device revocation data (MKB)

Forensic data (SKB)

Content revocation data (CRL)

Prerecorded
Video

Service Provider

Enhanced uses enabled

via on-line authentication

Figure 1-1 – System Overview (Informative)

The owner of audiovisual content that is to be protected provides that content and an associated set of usage

rules to a Licensed Replicator.

The licensing entity provides to the Licensed Replicator device revocation data in the form of a Media Key

Block (MKB). As described in the Introduction and Common Cryptographic Elements book of this

specification, the MKB will enable players, each using its set of device keys, to calculate the Media Key. If a

set of device keys is compromised in a way that threatens the integrity of the system, an updated MKB can be

provided by the Licensing Entity that will cause a device with the compromised set of device keys to calculate a

different key than is computed by devices containing unrevoked device keys. In this way, the compromised

device keys are “revoked” by the new MKB.

The licensing entity also provides to the Licensed Replicator content revocation data in the form of a Content

Revocation List (CRL), and a Content Certificate, both cryptographically signed by AACS LA. The Certificate

identifies the content and includes a cryptographic hash thereof (based on a series of hashes), which the

licensing entity receives from the replicator prior to signing the Certificate. The CRL identifies content that has

been signed and contains a valid certificate but has since been revoked and therefore shall not be accessed by a

compliant player.

The licensing entity also provides to the Licensed Replicator device variation data in the form of a Sequence

Key Block (SKB), and secret keys, called Media Key Variants, based on both the device variation data and

Media Key.

The Licensed Replicator encrypts the AACS Content to be protected, using one or more secret keys of its own

choosing, called Title Keys. The replicator encrypts the Title Keys in one or more keys derived from the Media

Key. For usage rules that can be modified by a Compliant Recorder, the replicator denotes one of the Title Keys

as the primary Title Key and cryptographically binds that Title Key to those usage rules to prevent any

malicious alteration of those usage rules. The AACS Content, usage rules, MKB, SKB, CRL and Content

Certificate are all pre-recorded onto the storage medium.

AACS LA provides secret Device Keys and Sequence Keys to licensed manufacturers for inclusion in

compliant playback devices/applications (Device Key sets and Sequence Key sets are typically unique per

device/application). When a storage medium with AACS Content is placed in a compliant player, the player

uses its Device Keys to process the MKB and calculate the corresponding Media Key. Using the Media Key

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 3

and its Sequence Keys to process the SKB, the device will calculate a particular Media Key Variant. Assuming

the given set of Device Keys has not been revoked, the calculated key will be one of the keys used by the

Licensed Replicator. The player uses an inverse procedure to that used by the Licensed Replicator to derive a

Title Key. The player also uses the Title Key to provide access to the AACS Content in a compliant manner.

AACS LA also provides its Entity Public Keys (i.e., its AACS LA Public Key and AACS LA Content

Certificate Public Key) to Licensed Manufacturers for inclusion in compliant devices/applications. Prior to

accessing content that has been signed as described in this book, a Compliant Player reads the Content

Certificate and CRL from the pre-recorded medium, and uses the Entity Public Keys to verify their integrity. If

either verification fails, access is aborted.

The compliant player keeps the CRL in non-volatile storage, unless it already has a more up-to-date list. Using

the most up-to-date CRL, the player checks to see if the content is revoked, and if it is, access is aborted.

During playback, the compliant player calculates a series of content hashes using the same method used by the

replicator. If the player’s calculated hash values differ at any point from the replicator-stored values, access is

aborted.

The system enables certain enhanced uses of Pre-recorded Video Content, at the election of the Content Owner,

through the use of a robust on-line connection. For example, a home video server might connect with a service

provider to obtain authorization to make a protected local copy of a given pre-recorded Title for “jukebox”

purposes. Such authorization might be provided free-of-charge to the owner of the optical media, with any

additional authorized copies incurring a charge. Thus, this and other enhanced uses may entail business

interaction between Content Owners and Service Providers, as indicated by the dashed line in the figure above.

1.3 Organization of this Document

This document is organized as follows:

 Chapter 1 provides an introduction and overview.

 Chapter 2 describes procedures related to the authentication and revocation of pre-recorded content.

 Chapter 3 describes procedures for the production (encryption) and off-line playback (decryption) of

protected pre-recorded content.

 Chapter 4 describes the Sequence Key Block.

 Chapter 5 describes how devices can perform a Managed Copy of content protected by AACS.

1.4 References

This specification shall be used in conjunction with the following publications. When the publications are

superseded by an approved revision, the revision shall apply.

 AACS LA, License agreement

 Introduction and Common Cryptographic Elements book

 Specification of Exclusive XML Canonicalization, http://www.w3.org/TR/xml-exc-c14n/#sec-

Specification

 Objects, Images and Applets in HTML Documents. Generic inclusion: the OBJECT element,

http://www.w3.org/TR/html4/struct/objects.html#edef-OBJECT

 Mt. Fuji Commands for Multimedia Devices Version 7 Revision 0.9 or later

1.5 Document History

This document version 0.953 supersedes versions 0.952 dated July 14, 2011 and 0.951 dated September 28,

2009 and contains the following changes:

 Changes to the Managed Copy protocols in Chapter 5 to eliminate the Check Serial Number message,

and add arguments to the Request Offers message. Furthermore, the method by which offers are

presented in a browser was changed.

http://www.w3.org/TR/xml-exc-c14n/#sec-Specification
http://www.w3.org/TR/xml-exc-c14n/#sec-Specification
http://www.w3.org/TR/html4/struct/objects.html#edef-OBJECT

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 4

 Changes to the Managed Copy protocols described in Chapter 5 to support an optional but

recommended Managed Copy flow for the case where the serial number is provided separately from

the physical media (e.g., a sticker in the packaging)

 Content ID value now optional in Managed Copy process.

 Content ID and Content Certificate ID values are now returned as part of signed offers response.

MCMs other than Secretless Clients must validate these values.

The previous document version 0.951 added corrections for editorial errata to version 0.95, which superseded

version 0.92 dated November 29, 2007. It contained editorial improvements since the 0.92 version, plus the

following changes:

 Modifications to the Content Certificate for Bus Encryption

 Changes to Managed Copy protocols described in Chapter 5 and the Appendices to support recovery

from interrupted transactions and provide significant clarifications.

 Updated description and integrity protocol PMSN

 Addition of the Recordable Media Revocation Record Type

 Addition of Content Certificate ID to Request Offers

1.6 Future Directions

With its advanced, robust cryptography, key management and renewal mechanisms, it is expected that this

technology will develop and expand, through additions to this specification, to address content protection for

additional storage types, application formats and usage models, as authorized by AACS LA.

1.7 Notation

Except where specifically noted otherwise, this document uses the same notations and conventions for

numerical values, operations, and bit/byte ordering as described in the Introduction and Common

Cryptographic Elements book of this specification.

1.8 Terminology

Except where specifically noted otherwise, this document uses the same terminology as described in the

Introduction and Common Cryptographic Elements book of this specification

1.9 Abbreviations and Acronyms

Except where specifically noted otherwise, this document uses the same abbreviations and Acronyms as

described in the Introduction and Common Cryptographic Elements book of this specification.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 5

Chapter 2
Content Revocation

2 Introduction
This chapter describes a robust mechanism whereby content on individual media can be revoked to prevent

playback of unauthorized content. This is accomplished by applying cryptographic signatures to authorized

content and storing those signatures on the media with the content. The signature is validated before allowing

playback. A Content Revocation List (CRL) is also embedded onto media and then stored in non-volatile

memory by players and contains a list of content that contains a valid signature but has since been revoked. The

License Agreement describes the conditions under which such revocation can occur. Figure 2-1 presents an

overview of the approach, and details are provided in subsequent sections.

Content

Cert.

Licensing Entity

Private Keys Public Keys

SignSign

Licensed Replicator Licensed Player

Content

Cert.

Content Owner

(provided to

manufacturer)

Content

Usage

Rules

Content Encrypt

HashHash

Encrypted

Content

Content

Hash

Content

Entity Public Keys

HashHash

VerifyVerify

Prerecorded Video

Compare

Content

Cert.

Content

Cert.

CRL

CRL CRL

SignSign

Decrypt

CRL Verify &

Process

Verify &

Process

Content

Hash

VerifyVerify
Content

Hash

Encrypted

Content

Figure 2-1 – Content Validation and Revocation Overview

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 6

2.1 Scope

The content verification and revocation scheme described in this chapter can be applied to both AACS

Encrypted and Unencrypted data. In this chapter, AACS Encrypted shall mean encrypted as described in this

specification and as applied to content formatted as defined in the format specific books of this specification.

Unencrypted shall mean content which could have been AACS Encrypted but was not, and is completely

unprotected, i.e., in the clear. Any content to which the AACS content verification rules can apply, whether

AACS Encrypted or Unencrypted, is referred to in this chapter as Certifiable Content. Content that conforms to

this scheme is referred to as Certified. The format specific books of this specification shall define requirements,

if any, for verifying the content signature that are not provided in this specification book.

 Certifiable Content that is AACS Encrypted shall conform to this scheme.

 Certifiable Content that is Unencrypted but on the same media as AACS Content shall also conform to this

scheme.

 Certifiable Content that is completely Unencrypted is not required under this license to conform to this

scheme.

AACS Licensed Players shall verify that the signature is correct as defined in Section 2.6 before providing

access to all content (AACS Encrypted or Unencrypted) which has been signed as described in this chapter,

including signed content that is completely Unencrypted. It is anticipated that format specific books will be

added to this specification which will define how to apply this scheme to other pre-recorded video formats

which do not utilize AACS encryption as it is defined in this specification.

2.2 Content Signing infrastructure

Licensed Players will contain the Entity Public Keys that will be used as the root of trust for validating content

signatures. Media containing content signed in accordance with this scheme will contain the following items:

 Content Certificate

 Content Hash Table

 Content Revocation List

The Content Certificate and Content Hash Table are together used to validate the authenticity of the content and

prevent playback of that content if the signature is not valid. The Content Revocation List is a mechanism to

prevent playback of content that contains a valid signature but is not valid content.

The Content Certificate, Content Hash Table, and Content Revocation List shall be stored on the pre-recorded

media with the signed content. The details and file formats for storing this information are contained in the

format specific books of this specification.

2.3 Content Hash Table

Replicators shall include with each Certified Content (i.e., content signed with an AACS Content

Certificate),that they produce a Content Hash Table (CHT). The CHT consists of a series of cryptographic hash

values calculated by the replicator, which cover the complete content, including any unencrypted content

included on the same media with AACS Content. For storage media that contain more than one physical layer,

the storage medium may contain a separate Content Hash Table for each layer. Details of CHT format,

calculation and storage are specific to each supported format, and are provided in the format-specific books of

this specification.

The inclusion of a Content Hash Table, together with the use of its digest in signing the Content Certificate,

enables Licensed Products to verify a correspondence between the Content Certificate and the pre-recorded

content with which it is used. If this verification fails, access to such content shall be aborted. When providing

access to Certified Content, the Licensed Product shall calculate the series of content hash values using the

same algorithm used by the replicator, and shall abort such access if at any time a calculated hash value does

not match the corresponding hash value provided by the replicator in the CHT. Unless the Licensed Product

has a robust means of detecting a change of the pre-recorded storage medium, it shall re-verify that the hash of

the CHT is the same as the Content Hash Table Digest contained in the Content Certificate whenever a CHT is

re-read from the medium.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 7

2.4 Content Certificate

Licensed Replicators shall include with any Certified Content that they produce, a signed Content Certificate

covering that content. The Content Certificate is stored as unencrypted data on the same storage medium as the

Certified Content, as described for each supported content format elsewhere in this specification. For storage

media that contain more than one physical layer, the storage medium may contain a separate Content Certificate

for each layer. Where a storage medium contains Certified Content in more than one content format, a Content

Certificate shall be included for each format. Table 2-1 shows the format of the Content Certificate.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 8

Table 2-1 – Content Certificate for Pre-recorded Video

Bit

Byte
7 6 5 4 3 2 1 0

0 Certificate Type: 0016

1 BEE Reserved

2

…

5

Total_Number_of_HashUnits

6 Total_Number_of_Layers

7 Layer_Number

8

…

11

Number_of_HashUnits

12

13
Number_of_Digests

14

15
Applicant ID

16 (msb) CCSS ID (lsb) Sequence Number 1

17 Sequence Number 1 (msb)

18 Timestamp

19 (lsb) Sequence Number 2

20

21
Minimum CRL Version

22

23
Reserved

24

25
Length_Format_Specific_Section

26

…

26+L-1

Format_Specific_Section

Reserved for definition and possible extension in Adaptation books

26+L

:

33+L

Content Hash Table Digest #1

… …

26+L+(N-1)*8

…

33+L+(N-1)*8

Content Hash Table Digest #N

34+L+(N-1)*8

:

73+L+(N-1)*8
Signature Data

Note: L is the length determined by Lengh_Format_Specific_Section. See the description below.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 9

Each Content Certificate includes:

 A 1-byte Certificate Type value, where 0016 shall be used to indicate a first-generation AACS Content

Certificate

 A 1-bit Bus Encryption Enabled (BEE) flag, where 02 means that bus encryption is not enabled for the

content covered by this Content Certificate, and 12 means that bus encryption is enabled for that

content.

 A 4-byte Total_Number_of_HashUnits field indicates the total number of Hash Unites on the optical

media.

 A 1-byte Total_Number_of_Layers field indicates the total number of layers on the optical media.

 A 1-byte Layer_Number field indicates the layer of the optical media for which this Content

Certificate is created. NOTE: This field may not be used by every Format. Additional details on the

meaning and use of this field may be provided in the Format specific books of this specification.

 A 4-byte Number_of_HashUnits field indicates the number of Hash Units on the layer for which this

Content Certificate is created. NOTE: This field may not be used by every Format. Additional details

on the meaning and use of this field may be provided in the Format specific books of this specification.

 A 2-byte Number_of_Digests field indicates the number of Content Hash Table Digests contained

within the Content Certificate. NOTE: Additional details on the meaning and use of this field may be

provided in the Format specific books of this specification.

 A 2-byte Applicant ID, assigned by the AACS LA. Each adopter that will be submitting requests to

AACS LA to create Content Certificates will be assigned a unique Applicant ID.

 A 4-byte Content Sequence Number consists of 6-bit Content Certificate Signing Server ID (CCSS

ID), 15-bit Timestamp, and 11-bit Sequence Number that is a concatenation of 4-bit Sequence Number

1 and 7-bit Sequence Number 2, and is assigned by the AACS LA to uniquely identify the Certified

Content amongst that applicant’s content. The combination of the Applicant ID and the Content

Sequence Number is referred to as the Content Certificate ID. In other words, the Content Certificate

ID is a 6-byte number. Timestamp indicates the date (referenced to UTC) when a Content Certificate

is signed, and contains a value for the elapsed days from 1st January 2008 with the value 0

representing 1st January 2008. Timestamp values predating 2 February 2008 are reserved, and shall

not be used as a timestamp.

 A 2-byte Minimum CRL Version value, assigned by the AACS LA to indicate the minimum Content

Revocation List Version number that shall accompany the Certified Content.

 A 2-byte Length_Format_Specific_Section that specifies the length of the subsequent

Format_Specific_Section section. If this value is zero, then the length of Format_Specific_Section is 2

to maintain byte alignment and the 2 bytes shall be treated as Reserved.

 A Format_Specific_Section. The length of this section and the fields contained within it are defined

separately in the adaptation books for each Format utilizing AACS. The combination of the

Length_Format_Specific_Section field and the Format_Specific_Section field shall always be a

multiple of 4 bytes.

 A series of 8-byte Content Hash Table Digests, containing the digests of the Content Hash Tables. The

digest consists of the least significant 64 bits of the resulting digest from SHA-1 as described in the

Introduction and Common Cryptographic Elements book of this specification.

 A 40 byte Signature Data, calculated using the Entity Private Key, over the entire data up to and

including Content_Hash_Table_Digest#N .

The Licensed Replicator shall obtain a signed Content Certificate from AACS LA for the content to be stored

on the medium, and where appropriate with a separate Content Certificate for each layer. The resulting Content

Certificate(s) and Content Hash Table(s) will be included with the content on the pre-recorded medium.

Section 2.5 contains additional details on what content shall be included in the creation of the Content

Certificate. The AACS LA will provide to the Licensed Replicator a current version of the Content Revocation

List which will also be included on the pre-recorded medium. The creation of the Content Certificate is

performed by the Licensed Replicator. The signing of the certificate is performed by a secure facility operated

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 10

by AACS LA. The Licensed Replicator will submit the certificate to the secure facility and receive the signed

certificate back from that facility.

The AACS LA provides its Entity Public Keys (which corresponds to the Entity Private Keys) to each licensed

manufacturer for inclusion in each licensed device or application produced. Licensed Products shall treat the

Entity Public Keys as Integrity Required, as defined in the AACS Compliance Rules. Prior to providing access

to Certified Content, Licensed Products shall verify the signature of the Content Certificate. If at any point in

the process the verification fails, such access shall be aborted. Unless the Licensed Product has a robust means

of detecting change of the pre-recorded storage medium, it shall, whenever a Content Certificate is re-read from

the medium, either re-verify the signature of the Certificate or robustly verify that the Certificate is the same as

one whose signature it already verified, before using the Content Hash Table Digest contained therein for

comparisons with the CHT.

Prior to providing access to Certified Content, Licensed Products shall also read and process a Content

Revocation List having a List Version value equal to or greater than the Minimum CRL Version value, as

described below.

2.5 Creating Content Certificate

A Licensed Replicator shall create the Content Certificate by the following procedure.

1. The digests of the individual units of content are computed as follows:

Cd = [SHA-1(Hash_Unit)]lsb_64

Where Hash_Unit is defined in the format specific Pre-recorded books of this specification and SHA-1 is the

SHA hashing function as defined in Introduction and Common Cryptographic Elements book.

All Hash_Units on the media shall be included in this computation. In the case where some of the Hash_Units

on the media are encrypted and others are not encrypted, the digest of the unencrypted Hash_Units shall also be

included in the CHT. For Hash_Units that are encrypted, Cd shall be calculated after encryption of those

Hash_Units.

2. Each instance of Cd is stored in one or more Content Hash Tables (CHT) as defined in the format specific

Pre-recorded books of this specification.

3. The digest of each Content Hash Table is computed as follows:

CHTd = [SHA-1(CHT)]lsb_64

4. Each instance of CHTd is stored in a Content Certificate (CC) and the Content Certificate is

cryptographically signed as follows:

CCsig = AACS_Sign(AACS_CCpriv, CC)

With AACS_Sign as defined in Introduction and Common Cryptographic Elements book and the format and

layout of the Content Certificate as defined in Section 2.4. The private key, denoted AACS_CCpriv, is an

additional private key of the AACS LA that is used only for the purpose of signing the Content Certificate.

This step will be performed at a secure facility operated by the AACS LA where AACS_CCpriv is securely

stored. The previous steps are all performed by the Licensed Replicator. This process is demonstrated in

Figure 2-2.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 11

Content

Content Hash TableContent Certificate

…
…

Content Digest

Header

Hash Table Digest

PKI Signature

Header

…

Step 1: Hash all

the Content Blocks

Step 2: Hash

the Hash Tables

Figure 2-2 – Content Signing Process

2.6 Verifying Content Certificate

As a condition of playing, copying or other use of content stored on a pre-recorded media as defined in the

relevant format specific books of this specification, a Licensed Product shall verify the integrity of that content

by the following procedure, once for each starting use of that content.

1. Selects a subset of hash units randomly from all content hash units, from which the content hash value is

calculated. The Licensed Product shall select the subset of hash units using one of the following two

procedures:

a) Selects 7 hash units randomly from all content hash units

b) Selects the first hash unit and additionally selects at least 1% of the remaining content hash units from

the position where playback begins until the end of the Title, where the hash units are randomly

selected and evenly distributed throughout all content hash units. As an example, the Licensed

Product could use a pseudo randomly generated value modulo 100 to determine which one of the next

100 hash units to verify.

All digests in the CHT shall be included in this selection process.

2. Calculates hash value for each of the selected content hash units.

Cd = [SHA-1(Hash_Unit)]lsb_64

Where Hash_Unit is defined in the Format-specific Pre-Recorded books of this specification and SHA-1 is

the SHA hashing function as defined in Introduction and Common Cryptographic Elements book.

3. Reads Content Hash Table (or tables), which includes the content hash values corresponding to the

selected content hash units and calculates the Content Hash Table digest.

CHTd = [SHA-1(CHT)]lsb_64

4. Reads Content Certificate, which includes the Content Hash Table digest (or digests) that should match the

digests calculated in step 3. If they do not match, the Licensed Product shall not proceed with content

playback.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 12

5. Verifies the Signature of the Content Certificate, where the Content Hash Table digest (or digests) has

been replaced with the digests calculated in step 3.

AACS_Verify(AACS_CCpub, CCsig, CC)

With AACS_Verify as defined in Introduction and Common Cryptographic Elements book. The public

key, denoted AACS_CCpub, is an additional public key of the AACS LA that is used only for the purpose

of verifying the Content Certificate. All Licensed Players are required to store this AACS LA’s additional

public key in a way that resists malicious modification.

6. The Licensed Product will not proceed with content playback if the signature fails to correctly verify.

7. For each selected hash unit, verifies that the calculated Cd from step 2 is equal to the corresponding Cd that

was contained in the selected Content Hash Tables. The Licensed Product will not proceed with content

playback if the digest of any of the selected hash units fails to match the expected digest value.

In addition, the player computes the cryptographic hash of the usage rules stored on the media, Cur. The

Licensed Product will not proceed with content playback if Cur is not equal to the associated usage rules hash

value present in the content certificate.

Cur = SHA-1(Usage_Rules)

This procedure is performed either before or after playback begins. If it is performed after playback begins and

the selection process described in step 1.a is utilized, steps 1 through 7 shall be completed within the first 300

seconds of playback. If it is performed after playback begins and the selection process described in step 1.b is

utilized, steps 3 through 6 shall be completed within the first 30 seconds of playback.

2.7 Content Revocation List (CRL)

Under certain circumstances described in the License Agreement, a variety of revocation actions may be

accomplished using the CRL. These actions include revocation of Certified Content (i.e., content signed with an

AACS Content Certificate), AACS Recordable Media used for Prepared Video, or Managed Copy Servers.

When this occurs, corresponding revocation records are added to the Content Revocation List. The Content

Revocation List is signed by AACS LA using its Entity Private Key and provided to all Licensed Replicators.

Licensed Replicators shall include the most recent CRL on each pre-recorded medium that they produce

containing Certified Content, in a manner consistent with normal production cycles as described in the License

Agreement, and as described for each supported content format elsewhere in this specification. The CRL is also

included as part of any AACS Prepared Video disk image, as described in the in the AACS Prepared Video

Book. Table 2-2 shows the format of the CRL.

Table 2-2 – Content Revocation List for Pre-recorded Video

Bit

Byte
7 6 5 4 3 2 1 0

0 List Type: 00002 Reserved C
R

L
 H

ead
er

1
List Version

2

3 Number of Segments (N)

4

:

7

Segment Size #1 (S1)

C
R

L
 S

eg
m

en
t #

1

8

:

4+S1-41

Revocation Record Set #1

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 13

4+S1-40

:

4+S1-1

Entity Signature #1

…

… …

X

:

X+3

Segment Size #N (SN)

C
R

L
 S

eg
m

en
t #

N

X+4

:

X+SN-41

Revocation Record Set #N

X+SN-40

:

X+SN-1

Entity Signature #N

A CRL shall consist of:

 A 4-bit List Type value, where 016 shall be used to indicate a first-generation AACS Content

Revocation List

 A 2-byte List Version value, which is assigned by the AACS LA to identify the version number of the

CRL, and shall start at 000016 and increase by an increment of one with each new version

 A 1-byte Number of Segments field, which indicates the number of CRL Segments that follow, and

shall be at least 1.

 One or more variable-size CRL Segments, each consisting of the following:

o A 4-byte Segment Size field, which indicates the size of the CRL Segment in bytes, starting

with the Segment Size field itself, and ending with the Entity Signature field of that CRL

Segment. The Segment Size value for the first segment (CRL Segment #1) shall be no more

than 128K bytes less the CRL Header.

o A variable-size Revocation Record Set field, which consists of zero or more Revocation

Records, as described below.

o A 40-byte Signature field, which contains the result of the AACS LA signing all fields above

the Signature field, including the CRL Header and previous CRL Segments, using the Entity

Private Key

Prior to providing access to Certified Content, Licensed Products shall read at least the CRL Header and CRL

Segment #1 of the CRL provided on the pre-recorded medium with that content, and use the Entity Public Key

to verify the Entity Signature found in that first segment. Licensed Products that allocate more than the

minimum non-volatile storage for the CRL shall also read subsequent CRL Segments, up to the amount of

storage provided, if present, and verify their corresponding Entity Signature. NOTE: when reading more than

one CRL Segment, only the signature of the last Segment shall be checked since that signature includes all

previous fields including previous Segments and the CRL Header. Licensed Products shall verify that the

CRL’s List Version value is equal to or greater than the Minimum CRL Version value of the Content

Certificate. If any of the above-mentioned verifications fails, such access shall be aborted.

The signature of a CRL segment is verified as follows:

AACS_Verify(AACS_LApub, CRL_Segsig, CRL_Seg)

With AACS_Verify and AACS_LApub as defined in Introduction and Common Cryptographic Elements book.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 14

A Licensed Product shall retain in non-volatile storage, at least the List Version and the Revocation Record Set

#1 of the CRL data with the highest valued List version which it encounters and has verified. Therefore, when a

CRL (or a portion thereof) is successfully verified as described above, the Licensed Product shall compare its

List Version value to the List Version value of its persistently stored CRL data, if any. If

 no CRL data was previously stored, or

 if the List Version value of the previously stored CRL data is lower than that of the newly read CRL,

or

 if the List Version values are the same but the newly read CRL data is larger (more complete) than the

previously stored CRL data and the product is able to store more CRL data than it previously stored,

then the Licensed Product shall replace the previously stored CRL data, if any, with the newly read CRL data.

Then, using its persistently stored CRL data, the Licensed Product shall examine the list to see if the Content

Certificate ID to be accessed is revoked and if so, such access shall be aborted.

When persistently storing CRL data, Licensed Products shall have at least 128K bytes of non-volatile storage

for that purpose. That size is sufficient to store the List Version field of the CRL and the Revocation Record Set

field of CRL Segment #1. Licensed Products that allocate more than 128K bytes of non-volatile storage shall

store other fields of the CRL which fit in the additional storage, including the Revocation Record Set fields of

other CRL Segments, if present. Where a Licensed Product persistently stores some but not all Revocation

Record Set fields of a CRL, it shall give priority to storing the Revocation Record Set fields of the lowest-

numbered CRL Segments. In all cases, Licensed Products shall treat CRL List Version and Revocation Record

Set fields as Integrity Required, as defined in the license agreement. Table 2-3 shows the format of a

Revocation Record for Content Certificate ID.

Table 2-3 – Revocation Record for Content Certificate ID

Bit

Byte
7 6 5 4 3 2 1 0

0 Record_Type: 00002 Range (bits 11-8)

1 Range (bits 7-0)

2

:

7
Content Certificate ID

A Revocation Record for Content Certificate ID shall consist of:

 A 4-bit Record Type value, where 016 shall be used to indicate a Revocation Record for Content

Certificate ID.

 A 12-bit Range value indicates the range of revoked Content Certificate ID’s starting from the ID

contained in the record. A value of zero in the Range field indicates that only one ID is being revoked.

 A 6-byte Content Certificate ID value (the concatenation of the 2-byte Applicant ID and the 4-byte

Content Sequence Number) indicating the lowest numbered Content Certificate ID to be revoked.

The CRL is also used to contain revocation information for Managed Copy Servers. A Licensed Product that

supports the client-side Managed Copy features described in Chapter 5 shall check the persistently stored CRL

for revocation entries that correspond to the Managed Copy Server Certificate that they received during

communication with the Managed Copy Server as defined in Chapter 5 when requesting authorization to make a

Managed Copy. Table 2-4 shows the format of a Revocation Record for Managed Copy Server Certificate ID.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 15

Table 2-4 – Revocation Record for Managed Copy Server Certificate ID

Bit

Byte
7 6 5 4 3 2 1 0

0 Record_Type: 00012 Range (bits 11-8)

1 Range (bits 7-0)

2

:

7
Managed Copy Server Certificate ID

A Revocation Record for Managed Copy Server Certificate ID shall consist of:

 A 4-bit Record Type value, where 0116 shall be used to indicate a Revocation Record for Managed

Copy Server Certificate ID.

 A 12-bit Range value indicates the range of revoked Managed Copy Server Certificate ID’s starting

from the ID contained in the record. A value of zero in the Range field indicates that only one ID is

being revoked.

 A 6-byte Managed Copy Server Certificate ID value indicating the lowest numbered ID to be revoked.

The CRL can also include revocation information for AACS Recordable Media via the Recordable Media

Revocation Record (RMRR). This record’s use is described in the AACS Prepared Video Book, and it is only

used for Prepared Video on AACS Recordable Media. Table 2-5 – Recordable Media Revocation Record Table

2-5 shows the format of the Recordable Media Revocation Record. Note that the payload of this record does not

fit in a single 8 byte Revocation Record, so three contiguous Revocation Records are used. These contiguous

records will always occur in the order described below and shall not cross a CRL Segment boundary.

Table 2-5 – Recordable Media Revocation Record

Bit

Byte
7 6 5 4 3 2 1 0

0 Record_Type: 00102 ICCID Recordable Media Type

1

:

6
Content Certificate ID

7 Media ID (bits 127-120)

8 Record_Type: 00112 Media ID (bits 119-116)

9

.

.

15

Media ID (bits 111-56)

16 Record_Type: 01002 Media ID (bits 115-112)

17

.

.

23

Media ID (bits 55-0)

A Recordable Media Revocation Record consists of

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 16

 A 4-bit Record Type value of 216 which indicates a Recordable Media Revocation Record (RMRR)

 A 1 bit Ignore Content Certificate ID flag. When this flag is set (1) only the content of the Media ID

field is relevant for revocation.

 A 3 bit Recordable Media Type field where, 0=BD-R/RE, 1=HD DVD-R/RW/RAM, 2=DVD-

R/RW/RAM, 3=+R/+RW.

 A 6-byte Content Certificate ID value (the concatenation of the 2-byte Applicant ID and the 4-byte

Content Sequence Number) indicating the Content Certificate ID to be revoked. The purpose of the

Content Certificate ID field here is to reference valid content that has been cloned using cloned media

IDs.

 A 16 byte (128 bits) Media ID value indicating the AACS Recordable Media identifier (as defined in

the AACS Recordable Video Book) to be revoked. For Media Types that use fewer than 128 bits then

the most significant bits shall be set to zero (0). Note: the Media ID spans all three Revocation Records

that in aggregate make up the Recordable Media Revocation Record as described in Table 2-5 above.

 A 4-bit Record Type of 316 which indicates the 2
nd

 of three Revocation Records associated with the

RMRR

 A 4-bit Record Type of 416 which indicates the 3
rd

 of three Revocation Records associated with the

RMRR

If a Licensed Product encounters a Revocation Record with a Record_Type value it does not recognize, the

record shall be ignored. Other valid records in the CRL shall still be processed, however. Revocation Records

within a CRL will not necessarily occur in order of their Content Certificate ID field values.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 17

Chapter 3
Content Encryption and Decryption

3 Introduction
This chapter specifies the procedures for encryption and decryption of pre-recorded video content protected by

AACS. Figure 3-1 presents a simplified overview (also see Chapter 3 of the Introduction and Common

Cryptographic Elements book for an explanation of KCD in this figure). The remainder of the chapter

describes the encryption and decryption processes in detail.

Replicator Playback DevicePre -Recorded Media

MKB Process MKB

Device Key Set

Encrypted Content DecryptEncryptContent Content

Volume ID

Usage Rules

Encrypted Key DecryptEncryptTitle Key

Usage Rules

Kmv

Kvu/Kvvu Kvu/Kvvu

AES-G AES-G

MKB

Km/Kmv

SKB Process SKBSKB

KCD KCD

Kt

AES-G

AACS LA
Content Certificate

Public Key

VerifySign

Km

Sequence Key Set

Volume ID

Figure 3-1 – Encryption and Decryption Overview

3.1 Content Encryption (General)

The owner of content that is to be protected provides the content in the form of one or more Titles, and their

associated Usage Rules, to the Licensed Replicator.

The Licensed Replicator shall select a secret, random Title Key for each Title to be protected. Each Title Key

shall be used to encrypt the content of its corresponding Title, as specified for each supported content format

elsewhere in this specification. At the replicator’s discretion, a given Title may be encrypted using the same

Title Key for all instances of pre-recorded media, or different Title Keys may be used for different instances.

The Licensed Replicator shall also assign a unpredictable (e.g., random) identifier to the protected Title or set of

protected Titles to be included together on a pre-recorded medium. This identifier, referred to as the Volume

ID, is used as a safeguard against “bit-by-bit copying” of AACS Content, and is therefore stored on the pre-

recorded medium in a manner that cannot be duplicated by consumer recorders, as specified for each supported

storage format elsewhere in this specification. At the Licensed Replicator’s discretion, the same Volume ID

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 18

may be used for all instances of pre-recorded media containing a given protected Title or set of protected Titles,

or different values may be assigned for different instances. Note: The use of different Volume IDs for the same

set of protected Titles in combination with downloaded content that is bound using the Content Binding method

as described in Section 5.5 of the Introduction and Common Cryptographic Elements book of this specification

will limit the downloaded content to use with media which share the same Volume ID.

For each protected Title or set of protected Titles to be included together on a pre-recorded medium, the AACS

LA provides to the Licensed Replicator a Media Key Block (MKB), a secret Media Key, a Sequence Key Block

(SKB), and a corresponding set of secret Media Key Variants. The Media Key Block will enable all compliant

devices, each using their set of secret Device Keys, to calculate the same Media Key as described in the

Introduction and Common Cryptographic Elements book of this specification. If a set of Device Keys is

compromised in a way that threatens the integrity of the system, an updated MKB can be released that will

cause a device with the compromised set of Device Keys to calculate a different Media Key than is computed

by the remaining compliant devices. In this way, the compromised Device Keys are “revoked” by the new

MKB.

For each protected Title, the Licensed Replicator calculates a cryptographic hash of the Media Key and/or the

Media Key Variants and the Volume ID, and uses the result to encrypt the Title’s Title Key. The AACS

Content, Encrypted Title Keys, signed Usage Rules and MKB are stored on the pre-recorded medium as

specified for each supported storage/content format elsewhere in this specification.

3.2 Content Decryption (General)

The AACS LA provides a set of 253 secret Device Keys, denoted Kd_0,Kd_1,…,Kd_n-1, to the licensed

manufacturer for inclusion into each compliant device or application produced. Device Key sets are either

unique per Licensed Product, or are used commonly by multiple products; the license agreement describes the

details and requirements associated with these two alternatives. A Licensed Product shall treat its Device Keys

as highly confidential, as defined in the license agreement.

The Licensed Product reads the MKB from the pre-recorded medium, and uses its Device Keys to process the

MKB and thereby calculate the Media Key, as described in the Introduction and Common Cryptographic

Elements book of this specification. If the given set of Device Keys has not been revoked, then the calculated

Media Key will be the same Media Key that was used by the Licensed Replicator as described above.

The AACS LA also provides a set of 256 Sequence Keys to the licensed manufacturer for inclusion in each

compliant device or application produced. Like Device Keys, Sequence Keys are either unique per Licensed

Product, or are used in common by multiple products. If a product’s Device Keys are unique, then its Sequence

Keys will also be unique; if a product’s Device Keys are in common, then its Sequence Keys will also be in

common. In either event, the Licensed Product reads the SKB from the pre-recorded medium and uses its

Sequence Keys and its previously calculated Media Key to calculate its Media Key Variant.

For each protected Title the Licensed Product then calculates a cryptographic hash of the calculated Media Key

and/or the Media Key Variants and the Volume ID, and uses the result to decrypt the Title’s Encrypted Title

Key. The result is then used to decrypt the Title, as specified for each supported format elsewhere in this

specification.

The Licensed Product verifies that the Content Certificate ID has not been included on a revocation list before

allowing playback of that Title.

Playback of AACS Content shall only be performed using the Title Keys and Volume ID which are read from

the media as defined in the applicable adaptation book. Except where otherwise provided for in these

specifications, the values used to enable playback of AACS Content (e.g. Title Keys and Volume ID) shall be

discarded upon removal of the instance of media from which they were retrieved. Any derived or intermediate

cryptographic values shall also be discarded.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 19

3.3 Calculating the Volume Unique Keys

The Volume Unique Key (Kvu) and/or the Volume Variant Unique Keys (Kvvu) are used to encrypt and decrypt

the Title Keys stored on the pre-recorded media, in a manner that is described in the given Format-specific book

of this specification.

The Volume Unique Key is calculated as follows:

1. Calculate the Media Key (Km):

The Km, and the Media Key Block are delivered directly to Licensed Replicators. The Licensed Replicator

embeds the MKB onto the media to enable Licensed Players to derive Km.

2. Calculate the Volume Unique Key (Kvu):

The Licensed Replicator chooses a Volume ID (IDv) to be placed on the pre-recorded media and calculates a

Volume Unique Key (Kvu) as follows:

 Kvu = AES-G(Km, IDv)

where AES-G represents the AES-based one-way function defined in the Introduction and Common

Cryptographic Elements book.

 The Volume Variant Unique Key is calculated as follows:

1. Calculate the Media Key Variant (Kmv):

The Kmv’s, and the Sequence Key Block are delivered directly to Licensed Replicators. The Licensed

Replicator embeds SKB onto the media to enable Licensed Players to derive its particular Kmv, as described in

Chapter 4

2. Calculate the Volume Variant Unique Key (Kvvu):

The Licensed Replicator calculates a Volume Variant Unique Key (Kvvu) as follows:

 Kvvu = AES-G(Kmv, IDv).

3.4 AACS Encryption on Pre-Recorded Media

The following steps detail the minimum procedures for encrypting AACS Content on pre-recorded media as

illustrated in Figure 3-1 above.

1. Generate the Title Key

The Licensed Replicator generates a statistically unique 128-bit Title Key (Kt).

2. Encrypt the content

The Title Key is used to encrypt the Content (C) as follows:

Ce = AES-128CBCE(Kt, C)

where AES-128CBCE represents encryption by the AES algorithm in CBC mode as defined in the Introduction

and Common Cryptographic Elements book.

3. Sign the content

The AACS Content is signed using the procedure defined in Section 2.5.

4. Encrypt the Title Key(s)

The Title Key(s) is encrypted (Kte) as follows:

 Kte = AES-128E(Ku, Kt)

where AES-128E represents encryption by the AES algorithm in ECB mode as defined in the Introduction and

Common Cryptographic Elements book and the Ku’s is one of the Volume Unique Keys defined in Section 3.3.

There may be more than one encryption at this step, if a Title Key is encrypted in all of the Volume Variant

Unique Keys.

5. Transfer the data

The Licensed Replicator stores the encrypted Title Keys (Kte), Usage Rules, Content Certificate, and the

encrypted AACS Content to the pre-recorded media in the location and manner as specified for each supported

Format elsewhere in this specification.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 20

3.5 AACS Decryption on Pre-Recorded Media

The following steps detail the minimum procedures for decrypting AACS Content on pre-recorded media as

illustrated in Figure 3-1 above.

1. Decrypt the Title Key(s)

The Title Key(s) is decrypted (Kt) as follows:

 Kt = AES-128D(Ku, Kte)

where AES-128D represents decryption by the AES algorithm in ECB mode as defined in the Introduction and

Common Cryptographic Elements book and Ku is one of the Volume Unique Keys defined in Section 3.3.

2. Verify content is not revoked

The Content Certificate ID is checked for revocation status as defined in Section 2.7. If the content has been

revoked, the content shall not be decrypted nor played.

3. Verify content signature

The AACS Content is verified as defined in Section 2.6. If the verification fails, the content shall not be further

decrypted nor played.

4. Decrypt the content

The Title Key is used to decrypt the Content (C) as follows:

C = AES-128CBCD(Kt, Ce)

where AES-128CBCD represents decryption by the AES algorithm in CBC mode as defined in the Introduction

and Common Cryptographic Elements book.

Steps 3 and 4 can be performed in parallel as defined in Section 2.6.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 21

Chapter 4
Sequence Key Block

4 Introduction
This chapter describes the use of device Sequence Keys and the Sequence Key Block (SKB) on pre-recorded

media. This chapter applies only to Class I Licensed Products. Class II Licensed Products process unified (Type

10) MKBs to achieve the same function, as described in the AACS Introduction and Common Cryptographic

Elements Book.

Fundamentally, AACS protection depends on Device Keys and the tree-based Media Key Block, which allows

unlimited, precise revocation without danger of collateral damage to innocent devices. Because of the inherent

power of the revocation of the AACS system, it is possible that attackers may forgo building clones or non-

compliant devices and instead devote themselves to attacks where they try to hide the underlying compromised

device(s). These attacks are both more expensive and more legally risky for the attackers, because the attacks

require them to have an active server serving either content keys or the content itself, on an instance-by-instance

basis.

It is possible that non-technical means could stop these “anonymous attack” servers. Nonetheless, AACS has

developed a technology to accurately determine the underlying compromised devices that these servers are

using, so the AACS revocation mechanism can be brought to bear. The technology is called Sequence Keys and

the Sequence Key Block.

Sets of Sequence Keys are assigned to individual devices by the AACS LA out of a matrix of keys. The AACS

LA also assigns the Sequence Key Blocks to be used on the pre-recorded media. In this respect, the key

management aspects of Sequence Keys are identical to the technology developed by 4C Entity, LLC, called

Content Protection for Recordable Media (CPRM). Sequence Key Blocks are very similar to CPRM Media Key

Blocks; the only differences arise from the different ciphers used (AES instead of C2). However, unlike CPRM

MKBs, the AACS SKBs are not part of the fundamental cryptographic protection of the content. The

fundamental protection of AACS is the Media Key; the SKB merely allows different variants of the Media Key

to be calculated by different devices.

The remainder of this section describes the Sequence Key Block in detail.

4.1 Sequence Key Block Principles

This is an informative section intended to give an overview of how Sequence Key Blocks work.

The AACS licensing agency will generate Sequence Keys organized in a large matrix. The matrix has 256

columns and not more than 65,536 rows. Each cell is a different Sequence Key. A single device has one key in

each column. Thus, each device has 256 Sequence Keys.

Attackers would prefer to use already-compromised Sequence Keys if they could, so that no new forensic

information could be deduced by the licensing agency. Therefore, it is important that compromised keys are no

longer usable by the attackers. The problem is that many thousands of devices might share a single

compromised key. Therefore, revocation of a single key is impossible. On the other hand, revocation of a

unique set of keys is very possible; in fact, that is precisely what the SKB achieves. The fundamental principle

is that no two devices have many keys in common, so even if the system has been heavily attacked and a

significant fraction of the Sequence Keys is compromised, all innocent devices will have many columns in

which they have uncompromised keys. The purpose of the Sequence Key Block is to give all innocent devices a

column they can use to calculate the correct answer, while at the same time preventing compromised devices

(who have compromised keys in all columns) from getting to the same answer.

In an SKB there are actually many correct answers, one for each variation in the content. For the purpose of

explanation, however, it is helpful to imagine that a single SKB is producing a single answer. We will call that

answer the output key. Then the SKB mechanism is completely identical to the CPRM/CPPM mechanism.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 22

K

é

K

link

é

K

link

é

K

K

K

é

K

K

link

K

link

K

K

hdr

K

é

K

link

é

K

é

link

K

hdr

0

é

K

é

K

0

0

é

K

hdr

K

é

K

0

é

K

0

é

K

hdr

Unconditional

(1)

Conditional

(2)

Conditional

(3)

Conditional

(4)

Conditional

(5)

Figure 4-1 – Example Sequence Key Block

As shown in Figure 4-1 above, the SKB begins with a first column, called the “unconditional” column. By

“column”, we mean a column of Sequence Keys in the matrix will be used to encrypt. (To be precise, the key

used to encrypt is derived from the Sequence Key, not the Sequence Key itself.) The first column will have an

encryption of the output key (denoted ‘K’ in the figure) in every uncompromised Sequence Key’s cell. Devices

that do not have compromised keys in that column immediately decrypt the output key. Devices, both innocent

and otherwise, that do have compromised keys instead decrypt a key called a link key that allows them to

process a further column in the SKB. To process the further column they need both the link key and their

Sequence Key in that column. Thus the subsequent columns are called “conditional” columns because they can

only be processed by the device if it were given the necessary link key in a previous column.

The subsequent additional conditional columns are produced the same way as the first column: They will have

an encryption of the output key in every uncompromised Sequence Key’s cell. Devices with a compromised key

will get a further link key to another column instead of the output key. However, after some number of columns

depending on the actual number of compromised keys, the AACS licensing agency will know that only

compromised devices would be getting the link key—all innocent devices would have found the output key in

this column or in a previous column. At this point, rather than encrypting a link key, the agency encrypts a 0,

and the SKB is complete. All innocent devices will have decrypted the output key, and all compromised devices

have ended up decrypting 0.

How do the devices know they have a link key versus the output key? The short answer is they do not, at least

not at first. Each conditional column has a header of known data (DEADBEEF16) encrypted in the link key for

that column. The device decrypts the header with the key it currently has. If the header decrypts correctly, the

device knows it has a link key and processes the column. If it does not decrypt correctly, the device knows it

has either the output key or a link key for a different column. When the device reaches the end of the SKB

without decrypting 0, it knows it shall have an output key. Note that this device logic allows the licensing

agency to send different populations of devices to different columns by having more than one link key output

from a single column. For example, in the figure, column (1) links to both column (2) and column (5). This

flexibility can help against certain types of attacks.

The preceding description is equally accurate for an AACS SKB as it is for a CPRM/CPPM Media Key Block,

with the exception that in the AACS SKB there is not a single output key, but multiple output keys called

Variant Data.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 23

4.2 Calculation of the Media Key Variant Data

4.2.1 Sequence Keys

Each AACS compliant device capable of playing pre-recorded content is given a set of secret Sequence Keys

when manufactured. These are in addition to the Device Keys that all AACS devices require. These Sequence

Keys are provided by the AACS LA and are for use in processing the Sequence Key Block. The result of the

calculation is Variant Data which is then combined with the Media Key from the Media Key Block to generate

the Media Key Variant, as explained in Section 4.3. Key sets are either unique per device, or are used

commonly by multiple devices. The AACS license agreement describes the details and requirements associated

with these two options.

Each device receives 256 64-bit Sequence Keys, which are referred to as Ks_i (i=0,1,…,255). For each

Sequence Key there is an associated Column and Row value, referred to as Cs_i (i=0,1,…,n-1) and Rs_j

(j=0,1,…,m-1) respectively. Column and Row values start at 0. For a given device, no two Sequence Keys will

have the same associated Column value (in other words, a device will have at most one Sequence Key per

Column). It is possible for a device to have some Sequence Keys with the same associated Row values.

A device uses a Sequence Key Ks_i together with the Media Key Km to calculate the Media Sequence Key Kms_i

as follows:

 Kms_i = AES-G(Km, Ks_i || 0302153EE3EC752416)

The Media Sequence Keys serve the role that the device keys in CPRM. In other words, the device does not use

its Sequence Key directly to decrypt; instead, it combines it with the Media Key first as shown above. That

means that a given SKB is associated with a given MKB (because the SKB depends on the Media Key for

correct processing).

A device shall treat its Sequence Keys as highly confidential, and their associated Row values as confidential,

as defined in the AACS license agreement.

4.2.2 Sequence Key Block (SKB)

The SKB is generated by the AACS LA and allows all compliant devices, each using their set of secret

Sequence Keys and the Media Key, to calculate the Variant Data, Dv, which in turn allows them to calculate the

Media Key Variant. If a set of Sequence Keys is compromised in a way that threatens the integrity of the

system, an updated SKB can be released that causes a device with one or more compromised sets of Sequence

Keys to calculate invalid Variant Data. In this way, the compromised Sequence Keys are “revoked” by the new

SKB.

An SKB is formatted as a sequence of contiguous Records. Each Record begins with a one-byte Record Type

field, followed by a three-byte Record Length field. The Record Type field value indicates the type of the

Record, and the Record Length field value indicates the number of bytes in the Record, including the Record

Type and the Record Length fields themselves. Record lengths are always multiples of 4 bytes. The Record

Type and Record Length fields are never encrypted. Subsequent fields in a Record may be encrypted (by the

AES cipher in ECB mode), depending on the Record Type.

Using its Sequence Keys, a device calculates Dv by processing Records of the SKB one-by-one, in order, from

first to last. Except where explicitly noted otherwise, a device shall process every Record of the SKB. The

device shall not make any assumptions about the length of Records, and shall instead use the Record Length

field value to go from one Record to the next. If a device encounters a Record with a Record Type field value it

does not recognize, it ignores that Record and skips to the next. For some Records, processing will result in the

calculation of a Dv value. Processing of subsequent Records may update the Dv value that was calculated

previously. After processing of the SKB is completed, the device uses the most recently calculated Dv value as

the final value for Dv.

If a device correctly processes an SKB using Sequence Keys that are revoked by that SKB, the resulting final

Dv will have the special value 0000000000000000000016. This special value will never be an SKB’s correct

final Dv value, and can therefore always be taken as an indication that the device’s Sequence Keys are revoked.

Device behavior in this situation is implementation defined. As an example, a device could exhibit a special

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 24

diagnostic code, as information to a service technician. If at any point, a device calculates a Dv value of zero, it

shall discontinue processing of the SKB and may conclude that it has been revoked.

The following subsections describe the currently defined Record types, and how a device processes each.

4.2.2.1 Verify Media Key Record

Table 4-1 – Verify Media Key Record Format

Bit

Byte
7 6 5 4 3 2 1 0

0 Record Type: 8116

1

Record Length: 00001416 2

3

4

Verification Data (Dx) …

19

A properly formatted SKB shall have exactly one Verify Media Key Record as its first Record. Bytes 4 through

19 of the Record contain the ciphertext value

 Dx = AES-128E (Km, 0123456789ABCDEF16 || XXXXXXXXXXXXXXXX16)

where XXXXXXXXXXXXXXXX16 is an arbitrary 8-byte value, and Km is the correct final Media

Key value.

The presence of the Verify Media Key Record in an SKB is mandatory, but the use of the Record by a device is

not mandatory. The device may use the Verify Media Key Record to make sure that it has the correct Media

Key for processing the SKB. The Media Key comes from calculation based on the separate Media Key Block.

Since MKBs and SKBs are associated, the device can, in effect, verify it has the correct MKB/SKB pair. The

device action in the case of a mismatched MKB/SKB pair is manufacturer-specific. In any event, the device will

not be able to process the content correctly.

If everything is correct, the device observes the condition:

 [AES_128D(Km, Dx)]msb_64 == 0123456789ABCDEF16

 where Km is the Media Key value.

4.2.2.2 Nonce Record

Table 4-2 – Nonce Record Format

Bit

Byte
7 6 5 4 3 2 1 0

0 Record Type: 0316

1

Record Length: 00001416 2

3

4

Nonce number (X) …

19

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 25

A properly formatted SKB shall have exactly one Nonce Record. The nonce number X is used in the Variant

Data calculation as described below. The Nonce Record will always precede the Calculate Variant Data Record

and the Conditionally Calculate Variant Data Records in the SKB, although it may not immediately precede

them.

4.2.2.3 Calculate Variant Data Record

Table 4-3 shows the format of a Calculate Variant Data Record.

Table 4-3 – Calculate Variant Data Record Format

Bit

Byte
7 6 5 4 3 2 1 0

0 Record Type: 0116

1

Record Length 2

3

4

Reserved …

7

8
Column

9

10
Generation: 000116

11

12

Reserved …

19

E
n

cr
y

p
te

d
 K

ey
 D

at
a

20

Encrypted Variant Data for Row 0 (Dke_0) …

29

30

Encrypted Variant Data for Row 1 (Dke_1) …

39

40
.

.

.

…

Length-1

A properly formatted SKB shall have exactly one Calculate Variant Data Record. Devices shall ignore any

Calculate Variant Data Records encountered after the first one in an SKB. The use of the Reserved fields is

currently undefined, and they shall be ignored. The Generation field shall contain 000116 for the first

generation. The Column field indicates the associated Column value for the Sequence Key to be used with this

Record, as described below. Bytes 20 and higher contain Encrypted Key Data (possibly followed by some

padding bytes at the end of the Record, not shown in Table 4-3). The first ten bytes of the Encrypted Key Data

correspond to Sequence Key Row 0; the next ten bytes correspond to Sequence Key Row 1; and so forth.

Before processing the Record, the device checks that both of the following conditions are true:

 Generation == 000116

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 26

 and

 the device has a Sequence Key with associated Column value Cd_i == Column, for some i.

If either of these conditions is false, the device ignores the rest of the Record.

Otherwise, using the value i from the condition above, the value X from the Nonce Record, and r = Rd_i, c =

Cd_i, the device calculates:

 Dv = [AES-G(Kms_i, X f(c,r))]msb_80 Dke_r

 where Kms_i is the device’s i-th Media Sequence Key’s value and Dke_r is the 80-bit value starting at

byte offset r 10 within the Record’s Encrypted Key Data. f(c,r) represents the 128-bit value:

 f(c,r) = 000016 || c || 000016 || r || 000000000000000016

 where c and r are left-padded to lengths 16 bits, by prepending zero-valued bits to each as needed. The

resulting Dv becomes the current Variant Data value.

It is not necessary for a first generation device to verify that Record Length is sufficient to index into the

Encrypted Key Data. First generation devices are assured that the Encrypted Key Data contains a value

corresponding to their Device Key’s associated Row value.

4.2.2.4 Conditionally Calculate Variant Data Record

Table 4-4 shows the format of a Conditionally Calculate Variant Data Record.

Table 4-4 – Conditionally Calculate Variant Data Record Format

Bit

Byte
7 6 5 4 3 2 1 0

0 Record Type: 8216

1

Record Length 2

3

E
n

cr
y

p
te

d
 C

o
n

d
it

io
n

al
 D

at
a

(D
ce

)

4

DEADBEEF16 (encrypted) …

7

8
Column (encrypted)

9

10
Generation: 000116 (encrypted)

11

12

Reserved …

19

D
o

u
b

ly
 E

n
cr

y
p

te
d

 V
ar

ia
n

t
D

at
a
 20

Doubly Encrypted Variant Data for Row 0 (Dkde_0) …

29

30

Doubly Encrypted Variant Data for Row 1 (Dkde_1) …

39

40
.

.

.

…

Length-1

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 27

A properly formatted SKB may have zero or more Conditionally Calculate Media Key Records. Bytes 4

through 19 of the Record contain Encrypted Conditional Data (Dce). If decrypted successfully, as described

below, bytes 4 through 7 contain the value DEADBEEF16, bytes 8-9 contains the associated Column value for

the Sequence Key to be used with this Record, and bytes 10-11 contain a Generation value of 000116 for the first

generation. Bytes 20 and higher contain Doubly Encrypted Variant Data (possibly followed by some padding

bytes at the end of the Record, not shown in Table 4-4). The first ten bytes of the Doubly Encrypted Key Data

correspond to Sequence Key Row 0, the next ten bytes correspond to Sequence Key Row 1, and so forth.

Upon encountering a Conditionally Calculate Variant Data Record, the device first calculates its current Media

Key Variant, as follows:

 Kmv = AES-G(Km, Dv || 041826fa774916)

Where Dv is its current Variant Data calculated from a previous Calculate Variant Data Record or Conditionally

Calculate Variant Data Record.

Using its current Kmv value, the device calculates Conditional Data (Dc) as:

 Dc = AES-128D(Kmv, Dce).

Before continuing to process the Record, the device checks that all of the following conditions are true:

 [Dc]msb_32 == DEADBEEF16

 and

 [Dc] 79:64 == 000116

 and

 the device has a Sequence Key with associated Column value Cd_i == [Dc]95:80 for some i.

If any of these conditions is false, the device ignores the rest of the Record.

Otherwise, using the value i from the condition above, X from the Nonce Record, the device’s current Variant

Data Dvold, and r = Rd_i, c = Cd_i, the device calculates:

Dvnew = [AES-G(Kms_i, X f(c,r))]msb_80 Dvold Dkde_r

where Dkde_r is the 80-bit value starting at byte offset r 10 within the Record’s Doubly Encrypted Key

Data, f(c,r) represents the 128-bit value:

f(c,r) = 000016 || c || 000016 || r || 000000000000000016

where c and r are left-padded to lengths 16 bits, by prepending zero-valued bits to each as needed. The

resulting Dvnew becomes the current Variant Data value.

This Record is always a multiple of 4 bytes.

4.2.2.5 End of Sequence Key Block Record

Table 4-5 – End of Sequence Key Block Record Format

Bit

Byte
7 6 5 4 3 2 1 0

0 Record Type: 0216

1

Record Length 2

3

4

Signature Data …

Length-1

A properly formatted SKB shall contain an End of Sequence Key Block Record. When a device encounters this

Record it stops processing the SKB, using whatever Dv value it has calculated up to that point as the final Dv for

that SKB.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 28

The End of Sequence Key Block Record contains the AACS LA’s signature on the data in the Sequence Key

Block up to, but not including, this Record. Devices may ignore the signature data. However, if any device

checks the signatures and determines that the signature does not verify or is omitted, it shall refuse to use the

Variant Data.

The length of this Record is always a multiple of 4 bytes.

4.3 Calculation of the Media Key Variant from the Variant Data

When the device has finished processing the SKB, and if it has not been revoked, it will have an 80-bit valid

Variant Data Dv. The device calculates the Media Key Variant from the Variant Data as follows:

 Kmv = AES-G(Km, Dv || 041826fa774916)

In addition, the low-order 10 bits of the Variant Data identify the Variant Number for the device to use in

playing the content, from 0 to 1023. This number usually denotes the particular Title Key file the device uses to

decrypt the content, although the meaning and use of the Variant Number is format-specific.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 29

Chapter 5
Managed Copy of Pre-recorded Content

5 Introduction
Content protected by AACS includes an offer for the consumer to make at least one additional copy of that

content after receiving appropriate authorization. That copy can be up to a full resolution “bit for bit” copy of

the original content and can also include other offers where only certain portions of the original content is

included in the copy. With some exceptions, all content protected by AACS includes this offer. Additional

details on those exceptions are documented in the license agreement. There may be additional offers available

and for the purposes of this chapter, the term “Managed Copy” means a copy of the content that has been made

subject to external authorization using the process defined in this chapter.

For the sake of clarity in this section, the precise definition of relevant terms is given as follows:

Client-side Binding In a transaction using Client-side Binding, the MCM will contain the

cryptographic keys to rebind the content to the destination (MCOT).

Content ID Defined in Chapter 5 of the Introduction and Common Cryptographic

Elements book

Content Certificate ID The concatenation of the Applicant ID and the Content Sequence Number

as defined in Section 2.4. The Content Certificate ID is a 6-byte value.

Default URL A URL provided by AACS LA to be used for locating a Managed Copy

Server for media which does not contain a valid Managed Copy URL. The

Default URL is embedded into Managed Copy Machines for this purpose.

The actual Default URL to be embedded into a Managed Copy Machine is

available on the AACS LA website. NOTE to Adopters: It may be

advisable to support the ability to update the embedded URL in the

Managed Copy Machine. Note that the Default URL stored in the MCM

identifies the Default Managed Copy Server

Format Specific Application

Refers to an application type specific to a format supported by this

specification (i.e., HDEX or BD-J).

Managed Copy Output Technology or (MCOT)

As defined in the Compliance Rules

Managed Copy Machine or (MCM) is the consumer software or hardware which performs a

Managed Copy. It is either tied to a Licensed Player, or it exists as a stand-

alone application – e.g. as part of a home media server

Managed Copy Server or (MCS) is the remote computer that provides authorization to MCM’s to

make Managed Copies. The appropriate MCS for a particular Title will be

identified by a URL that will be contained on the media to be copied. Note

that the “default” Managed Copy Server is the server instance operated on

behalf of AACS LA.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 30

Managed Copy Unit or (MCU) is a particular offer that is made available as a part of the offers

retrieved from the MCS or which reside on the media

PMSN Defined in Chapter 1 of the Introduction and Common Cryptographic

Elements book as the Pre-recorded Media Serial Number

Secretless Client An MCM client which is not running under an AACS Licensed Product.

These clients do not have access to an AACS Host Private Key, and must

use Server-side Binding. These clients typically run in a PC-like

environment.

Serial Number This is a value provided to the Managed Copy Server to identify the

particular disc being copied.

The Serial Number is either:

1. The PMSN included on pre-recorded media

2. Provided separately from the physical media (e.g., a Sticker Code

in the packaging)

3. Not provided

It is required that a Licensed Replicator use a Serial Number that is not

easily guessed by the end user. If Managed Copy offers are dependent on

the Serial Number, then Content Owners using the default Managed Copy

Server either shall identify a list of valid values for the Serial Number, or

these values shall conform to the constraints described below.

If the Content Owner plans on using the default Managed Copy Server and

does not provide a list of valid values, then that Serial Number shall

conform to the following format. This format shall contain the following

two fields:

1. One field is a sequence of 32 bits that encode a counter. The

counter contains either (a) a value from 1 to N, where N is the total

number of discs of that movie that have been released, or (b) a

value which alone, or when combined with other fields of the

Serial Number, ensures that the Serial Number is globally unique.

The counter is in Big Endian (most significant byte first) format.

2. One field is a sequence of Y check bits. The number Y is different,

depending on the type of Serial Number. The check bits are the

most significant Y bits of the following value:

AES-128E(Ksn, 5c65148db53e47d920119f9016 || Dcounter)

Where Ksn is a secret picked by the Content Owner or the

replicator, and Dcounter is the counter value for the particular Serial

Number. It is strongly recommended that Ksn be a movie-by-

movie secret, especially for the case of 1 (a) above. If the same

Ksn is used for two or more movies, there might be a risk that the

Serial Numbers generated for one movie would be used for another

movie.

The order of fields is such that check bits come first and the counter field

comes second.

In the case the Serial Number is a PMSN which is compatible with the

default Managed Copy Server, then the number Y is format specific; some

formats have defined fields in the PMSN so the 128-bit PMSN cannot be

completely arbitrary.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 31

In the case that the Content Owner plans on using the default Managed

Copy Server but is using a different algorithm to produce the unguessable

PMSN, then they shall provide a list of the valid Serial Numbers to the

default Managed Copy Server.

In the case that the Serial Number is provided separate from the physical

media, and the Content Owner plans on using the default Managed Copy

Server but does not provide a list of unguessable alphanumeric Sticker

Codes, the sticker shall be of the following form:

 xxxx-xxxx-xxxx-xxxx-xxxx

Where x's are alphanumeric characters from the set

 234679BCFGHJKMQTVWXY

with 2 being 010, 3 being 110, …, and Y being 1910 .

The server treats the 20 alphanumeric characters are as a base-20 positive

integer, which in turn encodes an 86-bit string, most significant bit first.

This means that the first 54 (Y) bits are the check bits, and the last 32 bits

encode the counter. The default server converts lower-case alphabetic

characters to upper case and removes hyphens and white space before

performing the base-20 conversion. To further improve the user experience,

the default server also converts the following invalid alphanumeric

characters before converting the Serial Number from alphanumeric to

binary:

8 --> Auto-map to "B"

D --> Auto-map to "B"

L --> Auto-map to "J"

N --> Auto-map to "M"

P --> Auto-map to "B"

R --> Auto-map to "B"

Z --> Auto-map to "2"

The remaining characters of 015AEIOSU remain invalid characters.

If the content owner is providing a list of valid Sticker Codes, the default

server does not perform the transformation above; nor does it have any

restriction on the character set. Likewise, the MCM shall not perform the

transformation above, nor remove any hyphens or white space.

Informative Note: The use of a Serial Number (whether provided as a

PMSN or as a Sticker Code) can affect the offers available for that disc. The

MCS tracks the use of the Serial Numbers as offers are redeemed. Offers

presented after the initial use of the Serial Number could, for example, be

priced differently, etc.

Server-side Binding In a transaction using Server-side Binding, the MCM counts on the

Managed Copy Server to bind the content to the destination.

Session ID A unique (string) value created by the Managed Copy Server (MCS) when

offers are requested by the Managed Copy Machine (MCM). This value is

cached by the MCS and is used to maintain idempotency through the rest of

the transaction. Note that there is also a sessionID argument associated

with the PerformReadDrive API. It is also set by the MCS, but it is only

used during that API. It is distinct from the Session ID value described

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 32

here. It is recommended that the value used for a Session ID be the string

representation of a Universally Unique Identifier (UUID)
1
.

Sticker Code Any non-PMSN-based Serial Number that is entered by the end user. A

typical example is a sticker associated with the packaging of the media.

Figure 5-1 presents an overview of the Managed Copy process and the remainder of this chapter describes this

process in detail.

App Layer of MCM

Licensed PlayerPre -Recorded Media

1: isMCMSupported

2: InvokeMCM

URL

PMSN

Content ID

Managed Copy Server

Scripts

Locate Remote Server

Request Offers

Create Offer List

MCOTList 4

3

5

MCOT MCMInfo

Request Permission

Session ID, CCID,
Content ID, MKB,
MCU1 .. MCUn,
Cmcs,
MCM Nonce,
Signature,
offerDetails,
DealManifest, etc

Grant Permission6

Sign

Status

Copy

Encrypted
Content

MCOT MCSInfo

7

Serial #,
Content ID,
MCOTList, MCM
Nonce,
AACS ObjAttr

MCUi,
Session ID,
MCOT MCMInfo

Status,
MCOT MCSInfo,
MCUi,
Session ID,
MCM Nonce,
Signature, etc.

MCM.exe
either/or

MCS Private Key

||

Content IDs

Approved MCOT List

MCS Certificate

MCS Private Key

DealManifest

Response

Verify

Transaction

Cache

Session ID,

perform

Transaction

Session ID

Compare

Session ID
MCUi

URL

MCUi, Serial #, etcé

either or

MKB, MCU1éMCUn(MCU0 imp), MCM Nonce

Session ID

Cmcs (MCS Certificate)

||

Sign

M
C

S
 P

ri
v
a
te

 K
e
y

MCUi

Session ID

Verify

MCSpub C
m

c
s

CRL

AACS LA Pub Key

Verify
Offers||

M
C

M

N
o

n
c
e

Cache

AACS Layer of MCM

Session ID, MCUi

Cmcs
MCSpub

Session ID
MCUi

Cmcs

MCOT

C
m

c
s

Recovery Point

Present Offers
>completeSelection

Close Transaction
>completeTransaction

Figure 5-1 – Managed Copy Overview

When making a Managed Copy, the MCM shall first connect to a MCS to obtain authorization. The URL

contained on the media identifies the MCS to be used for obtaining this authorization. In the event that no

Managed Copy URL is contained on the media, the MCM uses the Default URL

(https://mcas.aacsmanagedcopy.com/services/ManagedCopyService) to locate the MCS to be used. The MCM

shall provide to the MCS both the Content ID and the Content Certificate ID contained on the media. The

Content Owner shall direct the MCS on which of the two IDs to use for the Managed Copy operation. The

Format specific books of this specification define where these items are contained on the media.

The MCM can either be activated directly as a stand-alone application or it can be invoked via the menuing

system contained within the scripts on the media to be copied. Assuming the MCM is activated via the

1
 A Universally Unique Identifier (UUID) is a 128-bit identifier described in Internet Engineering Task Force

RFC 4122: A Universally Unique IDentifier (UUID) URN Namespace.

https://mcas.aacsmanagedcopy.com/services/ManagedCopyService
ftp://ftp.rfc-editor.org/in-notes/rfc4122.txt

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 33

menuing system, the MCM will follow the steps outlined below. If it is being activated as a stand-alone

application, then the MCM will begin at step 3.

The details appearing in both the figure above as well as the descriptive steps below illustrate the Managed

Copy protocol; some of the steps do not apply in the case where Server-side Binding is used. For simplicity, the

optional “Perform Read Drive” message (Section 5.5.1) is omitted in this figure.

1. The menuing system calls the API “IsMCMSupported” to determine if the Licensed Player contains the

ability to make a Managed Copy. If the response is false, then the process is terminated.

2. The menuing system calls the API “InvokeMCM” which will transfer control to the MCM.

3. The MCM uses the URL contained on the media to identify which MCS will be used to obtain

authorization to make the Managed Copy. Note: A Secretless-Client would execute the

PerformReadDrive message at this point (not shown).

4. The MCM formulates a “Request Offer” message as described in Section 5.5.3 below, to be sent to the

MCS as a means to request what Managed Copy offers are available. This message includes a nonce to

prevent replay attacks or modification of session information in the offers response.

5. The MCS formulates the list of Managed Copy offers that are available and sends them to the MCM using

the AACS defined Web service. This session information and the nonce received from the MCM in step 4

are signed by the MCS.

6. After verifying the status of the MCS and the integrity of the message, the MCM may filter the results

returned based upon offers that it can support:

a. It then presents the Managed Copy offers to the user, using either

i. a Content Owner provided Format Specific Application,

ii. an (XSLT generated) HTML page, or

iii. its own custom display of the XML data returned.

Note: Use of a second Request Offers message (not shown) would occur here if some of the

offers require use of a Sticker Code.

b. After an Offer is selected (or cancelled), the completeSelection API may optionally be invoked at

this point if the presentation of offers is to be invoked separately from the financial transaction.

This returns control to the MCM.

c. The MCM can then launch either the

i. financialApplicationURI or

ii. financialHTMLURL,

d. as available, to complete the financial transaction. The subsequent interactions between the

financial transaction (application or HTML) and the MCS to exchange such items as the specific

offer chosen, the sessionID, account information and the performance of any financial

transactions, are outside the scope of the AACS Specification. The MCS shall expose a protocol

for the financial transaction to provide this information to the MCS, but this protocol is outside the

scope of the AACS Specification.

e. If the offer presentation and financial transaction steps are combined, then another alternative for

performing the financial transaction step is to do so inline, without returning control to the MCM.

In the ladder diagram below, the columns labeled “UI Appl” and “Financial Appl” which are

shown as separate, would then be combined into one application.

f. In either event, after the financial transaction is completed, the completeTransaction API is called

and control is returned to the MCM.

Note: Verification of the MCS message by the MCM is not required when using Server-side Binding. See

Section 5.3 below.

7. Once the user has selected an offer and completed any required transactions with the MCS, the MCM sends

the “Request Permission” message as described in Section 5.5.6 below.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 34

Note that since the AACS Managed Copy Protocol is idempotent, caching of the Session ID, the MCUi on

the MCS, and the MCS Certificate cached on the MCM provides the MCM with a recovery mechanism

(Recovery Point in Figure 5.1).

8. The MCS verifies the correctness of the values contained in the Request Permission message by comparing

them to the values contained in previous transactions and if they are correct and all conditions have been

met, then the MCS formulates a cryptographically secure response to the MCM that will indicate

authorization to make the Managed Copy as described in Section 5.5.7 below.

9. An MCM using Client-side Binding will verify the integrity of the response message.

10. If all the conditions described in Section 5.5.7.1 below are met, then the MCM will initiate the Managed

Copy. As part of the copying process, the MCM shall verify the integrity of the content as explained in

section 2.6, and if that fails, abort the process. The sole exception to this required calculation is if the copy

is a bit-for-bit copy to AACS Prepared Video or an AACS-protected Bound Copy Method using the AACS

Content Certificate as specified in section 2.6.

For sake of clarification, the following ladder diagram in Figure 5-2 is provided as an example to show the flow

of control for when Format Specific Applications are used to present offers and perform the financial

transaction. The numbers correlate to the steps above.

Figure 5-2 – Example of Managed Copy Message Flow

The following table lists pertinent data values and when in the timeline they are set for this example. It is

important to note that once the “Session ID” is set by the server, it becomes a key element to tie the complete

process together. Additionally, the MCUi is set at time of offer selection and along with the Session ID, become

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 35

the primary data elements used to maintain consistency through the entire process. The “SET” values in the

table should be interpreted to mean that once a data element is set, it remains set.

Table 5-1 –Managed Copy - Setting Data Elements

 4 5 6a 6b 6c 6d 6f 7

Session ID SET

Coupon SET
2

MCOT SET

MCOTList SET
1
 SET

1

MCUi SET (SET
3
)

SET
1
: MCOTList is optional – see Section 5.5.3

SET
2
: Only set when the financial transaction is successfully completed.

SET
3
: In this example, completeSelection is used, and that is when the MCUi is set. If it had not been

used, then it would be set during completeTransaction.

In the case the Sticker Code is used for a Title, Offer Response might contain offers with serialNumberRequired

flag and they might not be valid offers. For better user experience, it is strongly recommended that MCM

implementation follows the rules described below. The following flow chart describes a MCM behavior in the

case that the Sticker Code is used.

Any offer requiring

a Sticker Code?

MCM display all offers

originally returned

User selects

an offer

MCM displays 'Enter

Sticker Codeó

No Yes

Sticker Code entered?

Yes

MCM receives Offer

Response from MCS

and displays all offers

MCM displays only

Offers requiring

No Sticker Code

and ñGO BACKò

Offer selection

or ñGO BACK ?
Offer

Selected

GO BACK

No

User inserts

disc

MCM sends

Request Offer to MCS

MCM receives Offer

Response from MCS

MCM sends

Request Offer with

Sticker Code to MCS

Begin copy

Start

End

a

b

c

d

ef

g

h

i

Figure 5-3 – Flow Chart in the case Sticker Code is used

The following procedures clarify the flow chart above:

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 36

a. The MCM sends the initial Request Offer that does not contain any Sticker Codes.

b. The MCM receives the Offer Response that might contain offers requiring the Sticker Code, i.e. offers with

serialNumberRequired flag set to 1.

c. The MCM shall check if there are any offers requiring the Sticker Code. If there are none, the MCM shall

display offers that it can support, let the user select an offer and continue subsequent processes.

d. If there is one or more offers requiring the Sticker Code, the MCM requests a user to input the Sticker Code.

Alternatively, if the MCM is launching a browser for the presentation of offers, it can optionally omit asking for

the Sticker Code itself, because it can safely assume that the presentation Web page will ask the user for the

sticker codeSticker Code. Note that the MCM may provide a method to cancel this operation.

e. If the MCM collects the Sticker Code, the MCM sends the second Request Offers that contains the Sticker

Codes. Note that the MCM shall send the same session Id that was returned from the first Request Offers

response.

f. The MCM receives the Offer Response that may contain valid offers requiring the Sticker Code and/or offers

requiring no Sticker Code. The MCM shall display offers that it can support, let the user select an offer and

continue subsequent processes. Note that if the Sticker Code sent by the MCM is not valid, the MCM receives

an error message from the MCS. In this case, the MCM may provide a method to allow the user to input the

Sticker Code again or a method to cancel this operation.

g. If the Sticker Code is not entered, the MCM shall display offers requiring no Sticker Code, i.e. offers with

serialNumberRequired not set to true, and shall not display any offers requiring the Sticker Code. The MCM

may also provide a method to allow the user to go back to the Sticker Code input display or a method to cancel

this operation. Note, if all offers returned require a Sticker Code and the user declines to enter one, that is

equivalent to canceling the operation.

h. If the user selects an offer, the MCM shall continue subsequent processes.

i. If the user chooses to go back, the MCM shall go back to step d.

Sections 5.1 to 5.7 provide additional details on the process of making a Managed Copy and are normative

unless otherwise specified.

Section 5.8 describes an implementation example and is informative unless otherwise specified. This section is

included to provide sufficient background and description to enable implementation of a Managed Copy

infrastructure but is not meant to dictate a particular implementation.

5.1 Managed Copy Machine Initiation

AACS does not specify whether or not the MCM is integrated with the AACS Licensed Player and does not

require that all Licensed Players support making a Managed Copy. AACS does define two normative API’s to

facilitate the initiation of a Managed Copy as a part of the menuing system of the disc.

IsMCMSupported A Boolean function which returns true if the player can invoke a Managed

Copy Machine, otherwise it shall return false. If the player is designed to

support a Managed Copy Machine, but none is available, it shall return false.

InvokeMCM A function which invokes a Managed Copy Machine, if one is supported by the

player.

The precise syntax of these APIs is format specific and will be defined in the format specific books of this

specification. The general functions are as listed here. All AACS Licensed Players shall support the equivalent

of the IsMCMSupported call. Support for the InvokeMCM call is only required for Licensed Players that also

contain an MCM. The menuing system is format specific and is defined in the format specific books of the

specification. The scripts that implement the menuing system shall not call the InvokeMCM function if the

IsMCMSupported call returns false.

The MCM may also be activated as a stand-alone application and is not required to be integrated with the

menuing system on the media.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 37

5.2 Connection Protocol

All of the normative communication between the MCM and the MCS are performed using the AACS defined

Web services interface as presented (see Appendix C).

Figure 5-1 shows the interface between the AACS Layer and the not necessarily secure Internet Application

Layer in the MCM. Applications not using Server-side Binding shall conform to that interface.

The MCS and MCM shall each support URL redirection. The MCS shall append the Location field in the

HTTP response when returning either the 302 or the 303 HTTP status codes. In both cases, the MCM shall then

attempt to re-connect to the URL described in the Location field.

5.3 Managed Copy Account Transactions

A Managed Copy may involve a financial and/or account setup transaction. The protocol used to exchange any

such information is outside of the scope of this specification. However, two hooks are provided within the

Managed Copy Web services to enable the Content Owner to insert methods for collecting this information

from the consumer.

These methods are roughly equivalent, since they both involve execution of a program defined by the MCS on

the MCM, within a standard execution environment (i.e, HDEX, BD-J or browser), and communicating

transaction results to the MCM through an AACS defined API.

If the MCM is using a standard execution environment (as described above) to render the offers, that

environment would naturally continue to perform the financial transaction. See section 5.5.5.2. However, the

MCM may render the offers itself. In this case, the MCM refers to one of two elements in the Managed Copy

Offer XML Schema (see Appendix A) to perform the financial transaction. They are:

 <financialApplication> which provides one or more URIs where a Format Specific (financial)

Application associated with each offer can be downloaded.

 <financialHTMLURL> which is a link to a financial transaction web page.

Each offer shall contain both a financialHTMLURL element and a financialApplication element for the MCM.

Offers shall provide a valid (non-empty string) value for at least the financialHTMLURL, except in certain

cases where the offer is free and no financial transaction is required. Note that free offers may have a

“financial” transaction, in order for the server to collect marketing or customer care information, and to display

the terms and conditions. Note also that the Session ID and MCUi shall be cached in the MCM after the

financial transaction has been completed (completeTransaction) to facilitate a recovery point between the close

of the financial transaction and prior to granting permission.

In both cases the Session ID in the Managed Copy Offer XML Schema (see Appendix A) shall be used by the

MCS and financial application to correctly associate each financial and/or account transaction with the correct

AACS-specified Managed Copy message. In the case of Server-side Binding, the financial transaction may also

convey the destination (binding) information.

As described in the text accompanying Figure 5-1, the financial transaction provides an opportunity to collect

additional information needed to complete the transaction.

5.3.1 Encapsulated Web Service Clients

A set of URIs are included in the Managed Copy Offer XML Schema (see Appendix A) which may be used by

the MCM. A given URI encapsulates the required account or financial transactions for the specified offer. A

“financialApplicationURI” shall point to a client application. This client application would know how to engage

the MCS-specific Web service for these transactions. Content Owners can include multiple

financialApplication elements with their financialApplicationURI values, associating each with a particular type

of MCM. A financialApplicationType field is associated with each URI to allow the MCM to differentiate

among financial applications. As documented in the schema, each financialApplication element contains URI

and type pairs as follows:

 financialApplicationType – which is a value from a list of types which the MCM can use to identify

the appropriate application. Predefined values for this field are “BD-J” and “HDEX”. Other values

can be added by Content Owners working with MCM providers.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 38

 financialApplicationURI – which identifies the URI of a financial application for the offer

The MCM retrieves the file referenced by the URI and executes the enclosed application. At a minimum, the

following data values from the AACS Object must be provided:

 Session ID (already included in offers)

 MCUi (if already populated via prior callback completeSelection)

Once this application has finished, the last action it takes is to execute the required completeTransaction method

as described in Section 5.3.3 below. This provides the MCM with the information needed to complete the

Managed Copy operation.

This method enables the MCM to be implemented without specific knowledge of the Web service framework

required for the MCS encountered.

The financialApplicationURI normally references an application hosted by the MCS, but it could also indicate a

3
rd

 party application which provides its own means of interaction with the MCM to verify completion of the

financial transaction. In the case of 3
rd

 party applications, the MCS shall use technical and/or contractual means

to confirm the completion of the financial transaction before granting permission in its response to the Request

Permission message for the offer.

5.3.2 Links to a Transaction Web Page

In addition to the financialApplicationURI values described in Section 5.3.1, the Managed Copy Offer XML

schema associates with each offer a financialHTMLURL. Regardless of how the offers are rendered for the

user, the MCM can choose to consummate financial and/or account transactions using the page pointed to by

this link.

The MCM launches a component browser passing to it the financialHTMLURL. When the transaction is

complete, the last action in the HTML shall instruct the browser to do is to execute the completeTransaction

method as described in Section 5.3.3 below. This allows the MCM to continue with the Managed Copy

operation.

The financialHTMLURL normally references a web page hosted by the MCS, but it could also indicate a 3
rd

party web site which provides its own means of interaction with the MCM to verify completion of the financial

transaction. In the case of 3
rd

 party applications, the MCS shall use technical and/or contractual means to

confirm the completion of the financial transaction before granting permission in its response to the Request

Permission message for the offer.

5.3.3 Use of AACS Object for Financial Transaction

The financial and/or account transactions required to acquire a Managed Copy approval are not normative to

AACS. For this reason, they are executed within either a client application or a browser.

In order for these hosted components described in 5.3.1 and 5.3.2 to provide the MCM with the status of their

actions, the MCM shall expose to the selected component the completeTransaction method. This method can be

implemented in a variety of ways:

 If the encapsulated Web service client is used, then the method shall be implemented as part of a client

application method appropriate to the format (e.g. HDEX or BD-J);

 If links to a transaction web page are used, then a method of an embedded HTML Object (e.g., a Java

applet, a plug in, or an ActiveX control) shall be used.

The completeTransaction method is used to give control to the MCM after completion of the financial

transaction. Data returned through this API will be used in the subsequent Request Permission step. The

MCM shall provide support for the completeSelection API, although it may or may not be used when an offer is

selected (i.e., the offer presentation application or HTML could also perform the financial transaction then call

completeTransaction).

In order for the interactive layer scripts to have access to the XML offers property, the MCM shall load the

contents of the received XML offers into a Managed Copy offers property in the AACS Object. Note that the

MCM may further filter the offers returned by the MCS according to its capabilities, prior to their presentation.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 39

A Managed Copy Machine shall include a completeTransaction method and these properties in the AACS

Object:

Properties: String Offers, MCUi, majorMcotID, minorMcotID, mcotOfferInfo

Where:

Offers Contains the XML object “Offers” returned from the Managed Copy Server using

the RequestOffer message (see 5.5.1 and Appendix C).

MCUi Managed Copy Unit. A string containing the ID of the particular offer that was

selected as a part of the transaction. Note that this property is only set (into the

AACS Object) when the completeSelection method is used.

majorMcotID A string identifier of the major ID of Managed Copy Output Technology selected

for the Managed Copy, as defined in the AACS License. Note that this property is

only set (into the AACS Object) when the completeSelection method is used.

minorMcotID A string identifier of the minor ID of the Managed Copy Output Technology

selected for the Managed Copy, as defined in the AACS License. If there is no

minor code, this will be an empty string. Note that this property is only set (into the

AACS Object) when the completeSelection method is used.

mcotOfferInfo A base64Binary encoded string which provides MCOT specific information. If

there is no value, this will be an empty string. Note that this property is only set

(into the AACS Object) when the completeSelection method is used.

Functional Property: void completeTransaction

Syntax:

void completeTransaction (Coupon, majorMcotID, minorMcotID,

mcotOfferInfo, MCUi, Status, MCOTParams);

Where:

Coupon A string uniquely identifying the financial or account transaction. If no financial or

account transaction has been completed, Coupon shall be an empty string.

majorMcotID A string identifier of the major ID of Managed Copy Output Technology selected

for the Managed Copy, as defined in the AACS License.

minorMcotID A string identifier of the minor ID of the Managed Copy Output Technology

selected for the Managed Copy, as defined in the AACS License. If there is no

minor code, this will be an empty string.

mcotOfferInfo A base64Binary encoded string which provides MCOT specific information. If

there is no value, this will be an empty string.

MCUi Managed Copy Unit. A string containing the ID of the particular offer that was

selected as a part of the transaction.

If no offer was selected, the MCUi shall be an empty string.

Status A string containing further information on the transaction. Informative: For

example, if the transaction failed, Status may contain information about why that

transaction failed. At minimum, it must contain an empty string.

MCOTParams A string value with additional information specific to the Managed Copy Output

Technology to be used in customization of MCM_MCOTInfo to be sent in the

Request Permission message. This string is optional in the case of Client-side

Binding. In the case of Server-side Binding, it contains the necessary binding

information (the ID of the destination). If not provided, this shall be an empty

string.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 40

Once the MCM has received completeTransaction with a non-empty “coupon” and “MCUi”, it shall continue

with the managed copy process by sending Request Permission. It is permitted, but not required, for the MCM

to kill the financial application layer (the browser or the financial application) when it has received

completeTransaction. This means that the application layer must call completeTransaction as its last step; in

particular, it means that if the layer is displaying a confirmation screen to the user about the financial

transaction, it must allow the user a chance to read the screen before calling completeTransaction.

5.3.4 Accessing the AACS Object

The AACS Object can be referenced directly by Format Specific Applications. When offers are rendered using

a Format Specific Application, that application requires offers data returned by the MCS. This data is held in

the offers property of the AACS Object. Format Specific Applications performing the financial transaction step

of the Managed Copy operation also require the completeTransaction method from the AACS Object. See

individual Adaptation books for details.

The AACS Object is also the mechanism by which several other properties are communicated between the

MCM and the financial application (or HTML). Specifically, when offer selection is performed prior to

invocation of the financial transaction (application or HTML), then items such as the MCUi and other MCOT

specific data, will already be known by the MCM, and be available in the AACS Object for use by the financial

transaction (application or HTML).

When the financial transaction of a Managed Copy operation is performed using HTML, the MCM will need to

provide access to the completeTransaction method of the AACS Object within the HTML context. This is

accomplished through an embedded HTML Object.
2
 The data needed to embed the HTML Object was passed

to the MCS by the MCM in the AACSObjectAttributes during the Request Offers message (see Section 5.5.3).

The MCS then added the AACSObjectAttributes to each financialHTMLURL element value as a query

parameter before returning them in the Request Offers response.

When an HTML Object is used to initiate the completeTransaction API, a value of “application/x-aacs-

completetransaction” shall be set in the type attribute of the object. Similarly, when the HTML Object is used

to initiate the completeSelection API, a value of “application/x-aacs-object” shall be set in the type attribute of

the object.

The following informative example describes this interaction:

If the AACSObjectAttributes value included in the Request Offers request contains:

<OBJECT

classID="clsid:12345678-1234-1234-123456789ABC" type=application/x-aacs-object

width="0" height="0">

</OBJECT>

then the URL encoded financialHTMLURL value returned in the Request Offers response might be:

https://TakeMyMoney.com?miscParam1=foo&miscParam2=bar&AACSObjectAttributes=cla

ssID%3D%22clsid%3A12345678-1234-1234-123456789ABC%22+

type%3Dapplication%2Fx%2Daacs%2Dobject+width%3D%220%22+height%3D%220%22

and the resulting financial transaction web page would instantiate an HTML OBJECT of the form:

<OBJECT

id="AACS"

classID="clsid:12345678-1234-1234-123456789ABC"

type=”application/x-aacs-object” width="0" height="0">

</OBJECT>

2
 The W3C has standardized the mechanism for creating objects in HTML via the OBJECT element (for details,

see “Objects, Images and Applets in HTML Documents, Generic inclusion: the OBJECT element”,

http://www.w3.org/TR/html4/struct/objects.html#edef-OBJECT).

http://www.w3.org/TR/html4/struct/objects.html#edef-OBJECT

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 41

Note: the id of the resulting AACS Object can be any desired string, and can be generated by

the financial transaction entity.

Upon completion of the financial transaction, the JavaScript in the Web page shall direct the browser to invoke

the completeTransaction method of the AACS object:

AACS.completeTransaction (“myPurchase107”, “CPRM”, “”, “7”, “Successful”, “”)

5.4 MCS Certificate

The Managed Copy Server shall have an MCS Certificate (MCScert) which is used by MCMs to validate

responses signed with the corresponding private key of the MCS. Table 5-2 shows the format of the MCS

Certificate.

Table 5-2 –Managed Copy Server Certificate

Bit

Byte
7 6 5 4 3 2 1 0

0 Certificate Type: 0316

1 Reserved

2

…

3

Length: 005C16

4

…

9

MCS ID

10

…

11

Reserved

12

:

51
MCS Public Key

52

:

91
Signature Data

Each MCS Certificate includes:

 A 1-byte Certificate Type value, where 0316 shall be used to indicate a first-generation AACS MCS

Certificate

 A 2-byte Length field which indicates in bytes, the length of the MCS Certificate including the

signature data.

 A 6-byte MCS ID field which will be a unique identifier for each Managed Copy Server and will be

assigned by AACS LA.

 A 40 byte Managed Copy Server Public Key.

 A 40 byte Signature Data, calculated using the Entity Private Key, over the entire data up to and

including MCS Public Key.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 42

For future compatibility, when verifying the signature of the MCS Certificate, the Length field shall be used to

locate the Signature Data field, rather than a fixed offset.

5.5 Managed Copy Messages

An important component for both the request and response messages associated with the communication of the

available offers for Managed Copy operations is the Managed Copy Output Technology identifier (MCOT ID).

The MCOT ID is actually represented in a structured data element called mcotInfo, which includes a major ID

(MCOT) and zero or more minor IDs (mcotMinorCode) values. Additional informative discussion on this topic

relevant to MCOT providers can be found in Section 5.8.4.

5.5.1 Perform Read Drive

The purpose of this message is to allow the MCS to remotely read the PMSN on the media, in order to

determine that it is authentic, and to verify the presence of AACS media in the Licensed Drive. When a

Secretless Client MCM is seeking to make a Managed Copy, the “performReadDrive” API shall be the first

message sent to the MCS. Other MCMs are not required to use this API.

This message begins a remote drive authentication process with the drive in the MCM. (When an MCM is not

otherwise associated with a drive which contains a Drive Certificate to meet other obligations in the

specifications, it shall simulate this authentication by having its own Drive Certificate; see Section 5.7). The

authentication protocol (defined in Chapter 4 of the Introduction and Common Cryptographic Elements book)

requires several steps, which are accomplished by the MCM sending successive “performReadDrive” messages

to the MCS. As long as the returned status to a “performReadDrive” message is “CONTINUE”, then the

protocol is not finished, and the MCM needs to send a further “performReadDrive” message as described below,

or abort the protocol by simply not sending any further “performReadDrive” messages. The example figure

below illustrates the process.

MCSMCM

performDriveRead(initial)

performDriveRead(report key response)

performDriveRead(send key response)

performDriveRead(read PMSN response)

CONTINUE, SEND KEY cmd

CONTINUE, REPORT KEY cmd

CONTINUE, REPORT KEY, read PMSN cmd

SUCCESS

é é

Figure 5-4 –Example Use of performReadDrive Messages

In effect, the MCM acts as a proxy which allows the MCS to direct its interaction with the drive. Each

successive response from the MCS provides status information on the process as well as information needed to

execute a Mt. Fuji command with the drive. After receiving the message response from the MCS, the client

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 43

proxy uses the information returned to perform a Mt. Fuji command against the drive. The response from the

drive is then used as an argument for the next invocation of the “performReadDrive” message with the MCS,

and so on. The process continues until the MCS indicates the process is completed or has failed. The client

proxy checks for these conditions after each response from the MCS.

The “performReadDrive” message is a Web service message. The schema and associated WSDL definitions

which define this Web service are available in Appendix D and Appendix E of this document, respectively. The

request message contains the following information:

sessionId A text string received from the server in the previous response. In the special

case where this is the start of the drive authentication process being requested by

the client proxy, this argument shall contain the empty string (“”). If the server

receives an invalid sessionId, it shall return “FAILURE” in the message

response.

driveData This contains a generic binary argument which is primarily used to carry the

response data returned from execution of a Mt. Fuji command with the drive. As

such, the XML schema validation steps performed by the MCS on this Web

service request do not accomplish any automatic checking on content validity.

The MCS shall be able to parse this argument and perform validation of its

content based upon the context of which step of the drive authentication process

it is acting upon.

The actual drive command that corresponds to the driveData is generated by the

proxy based on the response of the previous performReadDrive message,

described below.

In the special case where this is the start of the drive authentication process

being requested by the client proxy, this argument will contain a binary value of

101010102 which signals the MCS that the process is being initiated.

driveMessage This field indicates success with a value of 0016 or failure via an error code from

the drive, returned from execution of the Mt. Fuji command, or zero length field

if the process is being initiated.

5.5.2 Perform Read Drive Response

The response by the MCS from the drive verification request is an XML object containing arguments needed by

the invoking client proxy to execute a Mt. Fuji command and continue the drive verification process. The

response message contains the following items:

Status This is a flag indicating the current status of this remote drive authentication

process. It has legal values of: “CONTINUE”, “FAILURE” and “SUCCESS”.

 If the value is “CONTINUE”, the proxy will use the “driveCommand”

to execute a Mt. Fuji command with the drive

 If the value is “SUCCESS” then the drive verification process has

completed successfully, and the MCM shall perform the next message

in the Managed Copy process (the requestOffers message defined in

Section 5.5.3).

 If the value is “FAILURE”, the MCM shall also perform the next

message, but assume that the original disc does not have a PMSN.

Alternatively, if the MCM has a reason to believe the original disc

actually has a PMSN, it shall abort the protocol or restart it from the

beginning. Note that an optional text string describing the reason for

the failure may be available in the “serverMessage” response argument

as below.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 44

sessionId This is a text string generated by the MCS so that it can distinguish multiple

concurrent drive authentication sequences. The client shall pass it unmodified

and unchecked as an argument to the subsequent performReadDrive messages.

sessionId is only valid if the Status is CONTINUE; if the Status is FAILURE or

SUCCESS, the MCS shall set sessionId to be the empty string (“”).

driveCommand Binary data containing a valid Mt. Fuji command and associated arguments

which the MCS is requesting the client proxy to execute against the drive. It is

not checked by the schema validation processor. This response argument will be

empty when the status indicates the process has completed in either “SUCCESS”

or “FAILURE”.

In general, the client proxy is not required to check the data for validity;

however, if the response is a response to the “Read PMSN” subcommand, it may

be useful for the client to remember the PMSN value for future messages.

serverMessage

This is an optional text string message which shall be used to provide additional

information related to the failure of the drive authentication process to complete

properly.

For a detailed definition of this Web service’s request and response syntax, please refer to Appendix E.

5.5.3 Request Offer

The Request Offer message is the second message in the Managed Copy protocol. It is a Web service message

as given in Appendix C, which uses the offer schema described in Appendix A. It contains the following

information:

cid Content ID. While the Content ID is not required (although recommended) to be

included on the disc, this parameter shall be provided to the MCS since it is

needed to identify the content, and therefore the offers which are available. If the

Content ID is not available on the disc, then this field shall be set to zero. Note

that for discs which do not have a Content ID, the Managed Copy process can

still be performed because the ccid (next field) will be available in all cases.

ccid Content Certificate ID. This shall always be provided to the MCS to uniquely

identify the content. For multi-layer discs, this shall be the CC ID for Layer 0.

Note that if the ccid sent to the MCS has been revoked by AACS, then the offers

returned by the MCS shall either be marked with the “withheld” tag, or the MCS

can prevent the offers from being returned to the MCM. Either is sufficient.

mcmNonce Managed Copy Machine generated 16-byte nonce (or 0 if the MCM is using

Server-side Binding). This will be used in processing the Offer Response

message to prevent replay attacks when the MCM is using Client-side Binding.

Such an MCM shall retain a cached copy of the mcmNonce for comparison with

the nonce value received back from the MCS in the Offer Response message.

serialNumber The Serial Number may be sent to the MCS to identify the specific instance of

media for which the copy is being requested. The MCS shall use the Serial

Number to determine what offers remain available for this media.

The Serial Number may be part of the physical media (i.e., a PMSN) or it may

be provided separately from the physical media (i.e., a sticker in the packaging).

 If the Serial Number is provided separately from the physical media, it

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 45

may be passed to the MCS as part of the Request Offer Message.

 If the Serial Number is included as part of the source media, then it

shall be sent to the MCS as part of the Request Offer message.

This is the PMSN value acquired by the MCM from reading the media,

or in the case of a Secret-less Client it is the value returned from the

drive during the performReadDrive protocol.

Managed Copy Servers shall not accept PMSNs that are invalid.

Serial Numbers are treated as bit strings and are converted using the

“base64Binary” transformation as specified in the XML schema in Appendix C.

In the case of the Sticker Codes, the character string that is the Sticker Code is

converted to a bit string using the ASCII codeset before being transformed.

Note: For Secret-less Clients, this value is the only connection in the Managed

Copy Server between the performReadDrive protocol and the rest of the

Managed Copy protocol.

sessionId This parameter is omitted in the initial Request Offer message in a Managed

Copy transaction. It shall be included in the second Request Offer message of

the same transaction
3
 (refer to Figure 5-3). It is the sessionId in the Offer

response returned from the initial Request Offer message. Note that it is not the

sessionId from a Perform Read Drive protocol; sending that sessionId would

cause the server to return an error.

LanguageCode This optional argument is one or more ISO 639-2 compliant (alpha-3) Language

Code values which allows the MCM to communicate its locale specific language

preference(s) information to the MCS. When provided, the MCS shall only

return offers which correspond to the language(s) requested. If this argument is

omitted, this means offers in all available languages are being requested.

AACSObjectAttributes This optional argument contains a string which the MCS URL encodes and adds

to the finanancialHTMLURL as a query string. It provides data necessary to

instantiate an HTML Object in the browser, which in turn allows access to the

AACS Object (See Section 5.3.4).

MCOTList This is an optional array of Managed Copy Output Technology IDs (MCOT IDs)

that the MCM uses to identify to the MCS the set of MCOTs for which it would

like to receive applicable offers. If the request only identifies an MCOT major

ID value, the MCS will return all the offers which are valid for that MCOT

major ID, regardless of its knowledge of any minor codes.

When the MCOT minor ID codes are also provided, the MCS will filter the

offers returned based upon its knowledge of the available MCOT ID minor

codes to just those which are valid for the requested major and minor MCOT ID

code pair(s) requested.

When no MCOT ID is supplied by the MCM, the MCS will treat the request as a

“wild card,” and shall return all available valid offers without any filtering. For

example, an MCOT with a major ID of “XYZ” and minor codes of “A”, “B” and

“C”, for which the MCOTList only identified the major code of “XYZ”, would

return offers applicable to any of these minor codes.

Each of the formulated offers (or MCUi’s) that are returned will specify which

MCOT(s) can be used as the output technology for that offer. The MCM will

likely want to filter out unusable offers prior to display to users, but such

behavior is not required.

Note: The Content ID (when included on the disc) and/or the Content Certificate ID are used by the MCS to

3
 This function replaces the Check Serial Number message from earlier versions of this specification.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 46

uniquely identify the content being copied. Content Providers and Content Participants are required to manage

these IDs and provide them to the default Managed Copy Server, if they choose to use that service.

5.5.4 Offer Response Creation

The response from the offer request is an XML object containing the offers available for this particular disc.

The contents of that XML object are described in Appendix A. Items of particular interest are described in the

following sections.

5.5.4.1 Creation of Cryptographic Signature of Managed Copy Offer Response

The MCS Certificate is sent to the MCM and after it has been validated by the MCM, the MCM shall use the

public key contained within the MCS Certificate to verify the signature of the Request Offer response (see

Section 5.5.4.3). It is also used to verify the Request Permission response (see Section 5.5.7.1). In a transaction

using Server-side Binding, an MCM is allowed to ignore the MCS Certificate and the signatures.

The Managed Copy Server (MCS) shall apply a cryptographic signature to the offers, Session ID and

mcmNonce. In the case of Client-side Binding, the MCM’s AACS Layer’s verification of this signature is used

to prevent replay attacks or attempts to modify the offers, Session ID or MCUi on the wire. This signature shall

be computed in the following manner:

AACS_Sign(MCSpri, offersSignedContent)

With AACS_Sign as defined in Introduction and Common Cryptographic Elements book and where MCSpri is a

Elliptic Curve Digital Signature Algorithm (ECDSA) Private Key that has been provided by AACS LA to the

MCS and where the data being signed consists only of the bytestream of the canonical serialization of the

Managed Copy Offer XML Schema element offersSignedContent (see Appendix A).

In order to produce the contents of the offersSignedContent element as a byte array for the AACS_Sign

method, the canonical form of offersSignedContent will be produced as UTF-8 bytes according to the

Exclusive XML Canonicalization specification (http://www.w3.org/TR/xml-exc-c14n/#sec-Specification)
4
.

5.5.4.2 Offer Details

Individual offer objects may include a set of offer details which, when present provide programmatically

accessible information about that Managed Copy offer. These details provide information which the MCM may

use to determine whether it is capable of fulfilling the offer and to present the offers in a more intelligent way,

such as filtering out offers which could not be satisfied by the MCM. It also functions to express the

performance and quality levels applicable to the copy which can be made for a given offer which the MCM

should observe when executing that particular Managed Copy offer. Rules pertaining to how an MCM is to use

this offer detail information are provided in the AACS Compliance Rules. The information provided by

offerDetails is organized into sections on video, audio and miscellaneous information as follows:

Video Codec Specific Information:

videoParametersName This is an optional name tag which can be useful in describing the overall

video attributes of the offer (e.g., “High Quality Video”).

minimumHorizontalResolution

and

maximumHorizontalResolution

These optional values characterize the range of horizontal resolution

values (in pixels) intended for the offer. The aspect ratio is assumed to be

maintained, so only the horizontal resolution can be specified.

minimumFrameRate This optional value identifies the minimum frame rate (in frames/sec) for

the offer.

videoBitrateInfo This is an optional set of information which can include a list of video

4
 Informative Note: The Exclusive XML Canonicalization specification allows canonicalization of the

subdocument in a way that is substantially independent of its XML context. This procedure does not strip tags

from the resultant canonicalized result, except where it has been removed from an enveloped context. See the

specification for more information.

http://www.w3.org/TR/xml-exc-c14n/#sec-Specification

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 47

codec names (valid values for these names may be found at

http://www.aacsla.com/managedcopy/AACS_Video_Codecs.pdf), as well

as an optional minimum video bit rate (in Mbits/sec) applicable to the

offer. Multiple codecs might share the same bitrate constraint so any

number of them can be associated with a given minimum bit rate. Not

specifying any codec name is interpreted as a wild card, implying all

valid video codec names. An offer can have at most one minimum video

bit rate which is not associated with a specifically identified codec, and

that minimum bit rate then applies to all codecs which do not have

specifically identified bit rates.

videoCodecName This is a list of zero or more video codec names.

minimumBitRate This is the minimum bit rate intended for using

the offer with which it is associated.

Audio Codec Specific Information:

audioParametersName This is an optional name tag which can be useful in describing the

overall audio attributes of the offer (e.g., “High Quality Audio”).

audioCodecName This is an optional list of audio codec names (valid values for these

names may be found at

http://www.aacsla.com/managedcopy/AACS_Audio_Codecs.pdf).

Not specifying any codec name is interpreted as a wild card,

implying all valid audio codec names.

minimumBitRate This is an optional lower bound on the minimum bit rate (in

kbits/sec) under which the referenced offer is intended to apply.

maximumBitRate This is an optional upper bound on the maximum bit rate (in

kbits/sec) over which the referenced offer is intended to apply.

minimumChannels This is an optional count of the minimum number of audio

channels applicable to the referenced offer.

Miscellaneous Information:

mcotInfo This is a list of one or more sets of parameters, where each set

includes an MCOT ID and optionally an mcotOfferInfo parameter

whose binary content is beyond the scope of this specification.

When the MCOT ID in the offer includes only the major

code component, the offer applies to all minor ID codes.

If one or more MCOT minor ID codes are returned, then

the offer applies only to those MCOT major and minor ID

code combinations.

For example, for an MCOT ID which has a major code of “XYZ”

and three possible minor codes of “A”, “B” and “C”, the MCS

might return “XYZ” as the MCOT ID major code together with

“B” and “C” as minor codes. This means that this particular offer

only applies to “XYZ” with either the “B” or “C” minor codes.

The mcotOfferInfo may contain MCOT specific information

which permits the MCM to make the best decision possible in

presenting and processing the offer for a particular MCOT. The

valid MCOT major ID values are found in Tables C-1 and C-2 of

the AACS License.

sourceURI This is an optional means of specifying a file or network location

http://www.aacsla.com/managedcopy/videocodeclist
http://www.aacsla.com/AACS_Audio_Codecs

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 48

where prepared content which corresponds specifically with the

offer can be found by the MCM. For example, this might

correspond to a reduced resolution version of the content prepared

specifically for a class of target devices.

hint This optional list of strings which allows the offer to provide

useful information to an MCM concerning the applicability of that

offer for a given device. It is intended to be used by the MCM to

perform more intelligent filtering of the available offers it presents

to the user based upon the capabilities of the device. The format

and content of the hints are beyond the scope of this specification,

but an example of its use might be to identify which offer is best

suited to a particular device.

If a minimum range value is omitted, it is assumed to be zero. If a maximum range value is omitted, then no

upper limit is intended.

5.5.4.3 Deal Manifest

A deal manifest can optionally be returned as part of the response to the Request Offers message. The deal

manifest shall contain format specific information that corresponds to specific offers, allowing the MCM to

determine exactly what needs to be copied when performing the copy to the destination. This information may

also be used by the MCM to estimate the space requirements required by the copy operation.

5.5.5 Offer Response Verification and Interpretation

The Managed Copy Request Offers response (see Appendix A) returned by the MCS includes within the offers

structure the ccid, the cid values, and the serialNumber from the request sent by the MCM. These are part of

the signed response. After validating the signature of the Request Offer response message (see Section 5.5.5.1

for when this is required), the MCM shall compare these ccid, cid, and serialNumber values with those it sent in

the Request Offers request message. If they do not match, the MCM shall consider the offers returned to be

invalid and shall terminate the Managed Copy process. The following sections describe topics specific to the

interpretation and verification of the Managed Copy offer response returned by the MCS.

5.5.5.1 Verification of Cryptographic Signature of Managed Copy Offer
Response

When an MCM using Client-side Binding receives the Offer Response message from the MCS, it shall verify

the message using the process outlined below (For transactions that utilize Server-side Binding, MCMs may

ignore this section):

1. Verify the integrity of the MCS Certificate using the following procedure and shall abort the Managed

Copy process if the signature fails to verify.

AACS_Verify(AACS_LApub, Signature Data, MCScert)

With AACS_Verify as defined in Introduction and Common Cryptographic Elements book.

2. Verify the MCS Certificate has not been revoked using the procedure described in Section 2.7 above.

If the MCS Certificate has been revoked, the MCM shall abort the Managed Copy process.

3. Verify the integrity of the Offer Response Message using the following procedure and shall refuse to

allow the Managed Copy process to continue if the signature fails to verify.

AACS_Verify(MCSpub, Signature Data, offersSignedContent)

With AACS_Verify as defined in Introduction and Common Cryptographic Elements book and where

MCSpub is contained in the MCScert and where the data which was signed consists only of the

bytestream of the canonical serialization of the Managed Copy Offer XML Schema element

offersSignedContent (see Appendix A).

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 49

In order to produce the contents of the offersSignedContent element as a byte array for the

AACS_Sign method, the canonical form of offersSignedContent will be produced as UTF-8 bytes

according to the Exclusive XML Canonicalization specification (http://www.w3.org/TR/xml-exc-

c14n/#sec-Specification)
5
.

4. Verify that the mcmNonce is the same nonce value that was transmitted to the MCS in the Request

Offer message and shall abort the Managed Copy process if the nonce values are not the same.

5.5.5.2 Display of Managed Copy Offers

The Managed Copy Machine can display the offers in multiple ways.

1. Content Owner provided Format Specific Application (i.e., BD-J or HDEX).

This option is available if an optional list of render elements is returned in the offers data provided in

the response to the getOffers message. Content Owners may identify one or more rendering

applications for presenting the offers. Each element of the render list contains the following items:

o renderType – which is a value from a list of types which the MCM can use to identify the

appropriate application. Predefined values for this field are “BD-J” and “HDEX”. Other

values can be added by Content Owners working with MCM providers.

o renderURI – which identifies where to obtain the downloadable application to execute.

The MCM examines the application(s) referenced in the list of render elements as part of the process

of presenting offers and shall select the first one that it can support.

2. Presentation of offers within a browser.

The MCS always returns a URL as part of a <render> element in the Request Offers response, with

<renderType> being “HTML” or “defaultHTML”
6
. The MCM using a browser to present offers

launches it on that URL. The MCM will only be passed offers appropriate to its MCOT(s). In rare

cases, however, an MCM may not fully support all the options in its MCOT. In that case, the MCM

shall instruct the server to remove offers it cannot support by appending the following string to the

URL:

 &exclude=mcui1/mcui2/é

where the mcuii are the “managed copy units” identifying the offers it cannot support.

3. MCM presentation of offers data using its own UI

When the MCM is not capable of supporting either options (1) or (2) above, then the MCM shall

display the offers in a manufacturer specific way using its own UI.

The MCM is deemed capable of supporting an offer presentation type based upon the following criteria:

 For Format Applications (e.g., BD-J or HDEX):

o The MCM is designed to interact with the applicable application layer engine, or

o The MCM is part of a Licensed Player which supports processing such applications

 For browser presented HTML:

o The MCM uses a browser that supports XSL Transformations (XSLT) Version 1.0 W3C

Recommendation 16 November 1999.

 For Presentation of XML offers data using MCM’s UI:

5
 Informative Note: The Exclusive XML Canonicalization specification allows canonicalization of the

subdocument in a way that is substantially independent of its XML context. This procedure does not strip tags

from the resultant canonicalized result, except where it has been removed from an enveloped context. See the

specification for more information.
6
 If the renderType is “defaultHTML”, the MCM is permitted, but not required, to present the offers with its

own native user interface.

http://www.w3.org/TR/xml-exc-c14n/#sec-Specification
http://www.w3.org/TR/xml-exc-c14n/#sec-Specification

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 50

o The MCM shall always support this option, if it cannot launch a browser that supports XSL.

5.5.5.2.1 Server Considerations

An MCS is required to support the “HTML” <render> element. That HTML URL must be customized to a

given MCM’s Request Offers response; i.e., it shall contain only the offers appropriate to that request. It is

recommended that the MCS implement this requirement by caching the Request Offers response (which is the

XML described in the appendices) for each active session identifier, and insert an XML stylesheet Processing

Instruction in the cached response (see http://www.w3.org/TR/xml-stylesheet/). To facilitate this approach,

AACS provides a default stylesheet that the server can use, although content owners are always permitted to

design their own. Furthermore, if a content owner is providing his own server, it can provide the required

HTML anyway he wants—not necessarily with XSLT. In all cases, however, the resulting data sent to the

browser must be responsive to the optional “&exclude=” clause in the URL, as explained above.

The following is an example of an xml-stylesheet Processing Instruction:

<?xml - stylesheet type= "text/xsl"

 href= "https:// mcs.studio .com/mc/styl esheet.xsl " ?>

This line shall be placed at the second line of the cached complete Request Offers response, after the XML

version line. The result can be sent directly to the XSLT-capable browser, which will then present the offers in

the style preferred by the Content Provider
7
.

5.5.5.2.2 Client Considerations

If the MCM renders offers using a Format Specific Application, the financial transaction may be performed in

the same application, or alternatively the completeSelection API may be used to return control to the MCM

where the MCM would launch the financial transaction.

Likewise, if the MCM renders offers with HTML, that application can either perform the financial transaction

or return control to the MCM in the same manner (using completeSelection).

Each offer returned by the MCS optionally includes an ISO 639-2 compliant Language Code value. These

values are available for use by the MCM to adjust the display of data for localization purposes. The MCM may

also filter the offers returned based upon those which it can support.

Note that in addition to the offers, this XML object includes an optional updated MKB which shall be used by

the MCS in the case that the Managed Copy destination is an AACS recordable disc for Prepared Video. This

MKB is ignored by the MCM.

The Request Offers response message can include a withheld attribute which functions as a flag that may be

associated with each offer. When the withheld flag is present and set to 1 for a given offer (which does not

affect whether the offer is displayed), the MCM shall not permit that offer to be selectable for purchase. This is

useful, for example, when it is desired to prevent the offer from being purchased, but still inform the consumer

of its existence.

5.5.5.3 Giving Control to the MCM

In order for the Content Owner provided format-specific application or (XSLT generated) HTML page based

rendering options described in section 5.5.5.2 to provide the MCM with the status of their actions, the MCM

shall expose to the selected component the completeSelection method. This method can be implemented in a

variety of ways:

 If the encapsulated Web service client (i.e., a Content Owner provided format-specific application) is

used for rendering of the offers, then the completeSelection method shall be implemented as part of a

client application method appropriate to the format (e.g. HDEX or BD-J);

7
 As of the date of this specification, there are incompatibilities amongst PC-based browsers on how they handle

the case where the XML comes from one URL domain and the XSL comes from another domain. Until these

incompatibilities are resolved, servers shall guarantee that the XML and XSL come from the same domain.

http://www.w3.org/TR/xml-stylesheet/

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 51

 If links to an offer rendering web page are used, then a method of an embedded HTML Object shall be

used. See Section 5.3.4 for an example illustrating how HTML <OBJECT> can be used to similarly

provide access to the completeSelection API and offers property of the AACS Object.

The completeSelection method is an optional function used to give control to the MCM after completion of the

offer selection. Data returned through this API will be used in the subsequent financial transaction step.

As described in Section 5.3.3, in order for the interactive layer scripts to have access to the XML offers object,

the MCM shall load the contents of the received XML offers object into a Managed Copy offers property. The

MCM may further filter the offers returned by the MCS according to its capabilities, prior to their presentation.

As with the completeTransaction method used for returning control from the financial transaction step

described in Section 5.3.3, the Managed Copy Machine shall include the following additions to the AACS

Object – a completeSelection method and these properties (same as described in Section 5.3.3):

Property: String Offers, MCUi

Where:

Offers Contains the XML object “Offers” returned from the Managed Copy

Server using the RequestOffer message (see 5.5.1 and Appendix C).

MCUi Managed Copy Unit. A string containing the ID of the particular

offer that was selected as a part of the transaction. Note that the

completeSelection method will populate this property using the value

passed.

Functional Property: void completeSelection

Syntax:

void completeSelection (majorMcotID, minorMcotID, mcotOfferInfo,

MCUi, status);

Where:

majorMcotID A string identifier of the major ID of Managed Copy Output Technology selected

for the Managed Copy, as defined in the AACS License.

minorMcotID A string identifier of the minor ID of the Managed Copy Output Technology

selected for the Managed Copy, as defined in the AACS License. If there is no

minor code, this will be an empty string.

mcotOfferInfo A base64Binary encoded string which provides MCOT specific information. If

there is no value, this will be an empty string.

MCUi Managed Copy Unit. A string containing the ID of the particular offer that was

selected as a part of the transaction.

If no offer was selected, the MCUi shall be an empty string.

status A string containing further information on the selection. If the selection failed or

was cancelled; status may contain information indicating why. At minimum, it must

contain an empty string.

5.5.6 Request Permission

Once the appropriate offer has been selected, the MCM sends a Request Permission message to the MCS. The

Request Permission message is a Web service message as given in Appendix C, which uses the permission

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 52

schema described in Appendix B. The Request Permission message is executed synchronously with the

Request Permission response returned as described in Section 5.5.7.1. It contains the following information:

MCUi Managed Copy Unit. A string containing the ID of the particular offer that was

selected as a part of the transaction.

sessionId Contains the sessionId that was returned in the XML object in response to the Request

Offers message.

mcmNonce Managed Copy Machine generated 16-byte nonce (or 0 if the MCM is using Server-side

Binding). This will be used in processing the Request Permission Response message to

prevent replay attacks when the MCM is using Client-side Binding. Such an MCM

shall retain a cached copy of the mcmNonce for comparison with the nonce value

received back from the MCS in the Permission Response message.

MCM_MCOTInfo Information sent to the MCS which is MCOT specific. It is optional in the case of

Client-side Binding; in the case of Server-side Binding, it is recommended to contain

the binding information. For example, it might contain the media ID if the MCOT

protects content on a recordable disc.

5.5.7 Request Permission Response Creation

When the MCS receives a Request Permission message, the contents of the message are compared to the

information received in the initial Request Offer message and any subsequent transactions that occurred. If all

the information is correct and the conditions have been satisfactorily met, the MCS will provide its permission

via its Request Permission response sent to the MCM. The Request Permission response message is a Web

service message as given in Appendix C, using the permission schema described in Appendix B. It contains the

following information:

status Indicates whether or not permission has been granted to make the copy. In an MCM

using Client-side Binding, this Status field shall only be used by the AACS Layer after

all message integrity checks have been completed. This Status field can also be used to

facilitate the Application Layer’s ability to determine the authorization status. A value

of zero indicates success.

statusMessage This is an optional text message suitable for end users, which may contain a reason for a

non-zero status code.

MCS_MCOTInfo Information sent to the MCM which is output technology specific. It is optional in the

case of Client-side Binding. In the case of Server-side Binding, it is recommended to

contain the license from the server. In a transaction using Server-side Binding, the

MCM may use the MCS_MCOTInfo in the response message to extract the binding

information to use with the copy. In such a case, the MCM is not required to verify the

integrity of the response.

mcmNonce The value of the mcmNonce sent by the MCM to the Managed Copy Server in the

Request Permission request message.

MCUi The value of the Managed Copy Unit sent by the MCM to the Managed Copy Server in

the Request Permission request message.

sessionId The value of the sessionId sent by the MCM to the Managed Copy Server in the

Request Permission request message.

Signature The Managed Copy Server (MCS) shall apply a cryptographic signature to the message

which in the case of Client-side Binding can be used by the AACS Layer to determine if

the copy has or has not been authorized. This value shall be computed in the following

manner:

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 53

AACS_Sign(MCSpri, permissionSignedContent)

With AACS_Sign as defined in Introduction and Common Cryptographic Elements

book and where MCSpri is a ECDSA Private Key that has been provided by AACS LA

to the MCS and where the data being signed consists only of the bytestream of the

canonical serialization of the Managed Copy Permission XML Schema element

permissionSignedContent and its direct descendants and does not include the associated

tags from the Web service message (see Appendix B).

In order to produce the contents of the permissionSignedContent element as a byte array

for the AACS_Sign method, the canonical form of permissionSignedContent will be

produced as UTF-8 bytes according to the Exclusive XML Canonicalization

specification (http://www.w3.org/TR/xml-exc-c14n/#sec-Specification).

5.5.7.1 Request Permission Response Validation

During a transaction using Client-side Binding, an MCM receiving the Request Permission response from the

MCS shall determine if the requested copy has been authorized. This is done using the process outlined below

(in a transaction using Server-side Binding, the MCM is not required to perform these steps):

1. Verify the integrity of the Request Permission Response message using the following procedure and

shall refuse to allow the Managed Copy process to continue if the signature fails to verify.

AACS_Verify(MCSpub, Signature Data, permissionSignedContent)

With AACS_Verify as defined in Introduction and Common Cryptographic Elements book and where

MCSpub is contained in the MCScert received in the Request Offer Response and stored in the MCM

Cache and where the data which was signed consists only of the bytestream of the canonical

serialization of the Managed Copy Permission XML Schema permissionSignedContent tag and its

direct descendants including their tags.

In order to produce the contents of the permissionSignedContent element as a byte array for the

AACS_Sign method, the canonical form of permissionSignedContent will be produced as UTF-8 bytes

according to the Exclusive XML Canonicalization specification (http://www.w3.org/TR/xml-exc-

c14n/#sec-Specification).

2. Verify that the Session ID contained within the permissionSignedContent element matches the Session

ID stored in the local MCM cache. If it does not, the MCM shall abort the Managed Copy process.

3. Verify that the MCUi contained within the permissionSignedContent element matches the MCUi

stored in the local MCM cache. If it does not, the MCM shall abort the Managed Copy process.

4. Verify that the mcmNonce value contained within the permissionSignedContent element matches the

mcmNonce stored in the local MCM cache. If it does not, the MCM shall abort the Managed Copy

process.

5. Determine if authorization to make the Managed Copy has been granted by verifying that the status

field of the Request Permission response is zero, indicating that the copy is authorized.

.

5.6 Making a Managed Copy

Once an MCM has validated the Request Permission response, or a Server-side Binding MCM has obtained the

license (e.g., from the MCS_MCOTInfo), the copy can be made to the selected MCOT. The copy shall be

bound to the destination media using a binding method defined by the MCOT.

The MCS_MCOTInfo that is returned by the MCS in the Request Permission response will contain any MCOT

specific information required by the selected MCOT to successfully bind the content to the destination media.

5.7 Managed Copy Server

The MCS shall have a Host Certificate and its associated private key, as described in Chapter 4 of the

Introduction and Common Cryptographic Elements book. In general, the Managed Copy Server shall follow the

http://www.w3.org/TR/xml-exc-c14n/#sec-Specification
http://www.w3.org/TR/xml-exc-c14n/#sec-Specification
http://www.w3.org/TR/xml-exc-c14n/#sec-Specification

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 54

protocols defined in that chapter; with the exception that it shall receive the latest Drive Revocation List from

AACS LA.

Note that the MCS performs some preliminary steps associated with bus decryption, although it shall not

perform the actual bus decryption procedure. To prevent the MCS from being used as part of a prohibited

remote playback operation, it is restricted to use of the following drive commands:

1. The READ DISC STRUCTURE command

2. The REPORT KEY command

3. The SEND KEY command

4. The SEND DISC STRUCTURE command

5.8 Informative Section: Components of a Managed Copy Architecture

This informative section is provided as a technical context for the requirements outlined in the normative

sections, above. It describes some assumptions about the kind of architecture which may evolve around

Managed Copy and the likely role of the normative Managed Copy components in that architecture.

For example,

Á It is assumed that there will not be one monolithic Managed Copy Server. Content Owners will engage

a variety of Managed Copy service providers - different service providers for different titles, for

different titles at different times, or for the same title at the same time.

Á Since permission granting for a Managed Copy is a more security sensitive operation, we have

assumed that such permission granting servers might not be collocated with the ‘store front’ service

server.

Á It is further assumed that users will want to use a single account for multiple services, rather than

having to set up a credit card or debit account with each and every Managed Copy service. For that

reason, we consider it likely that the account manager will be a separate server, with multiple service

servers accessing that same account.

What follows is an informative description of each component in this architecture.

5.8.1 The AACS Compliant Disc

An AACS compliant disc may contain the URL to identify the Managed Copy Server. As noted above, the

MCM also contains a Default URL to be used for any disc that does not contain this URL. The storage location

and encoding of this URL can be format specific, but it shall be available through an API to the AACS layer of

the Managed Copy Machine.

Inasmuch as AACS compliant discs have appeared on the market prior to Managed Copy services becoming

available, the URL stored on the AACS compliant disc may be set to a Content Owner owned URL which will

redirect to the Managed Copy Server chosen by the Content Owner for that disc. In this way, changing the

Managed Copy Server for a particular disc can easily be done from a single point.

5.8.2 The AACS Compliant Player

There are two ways that a Managed Copy can be initiated: as part of the consumer’s interactive experience with

the menuing system of the disc, or performed from a stand-alone application.

Although it is optional for an AACS compliant player to enable a Managed Copy, it shall expose the AACS

specified API for determining if Managed Copy can be initiated from the player.

5.8.3 The Managed Copy Machine

This component is required because all products which support Managed Copy shall, at a minimum, support the

communication between the Managed Copy Machine and the Managed Copy Server which makes rendering of

Managed Copy offers possible.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 55

The Managed Copy Machine (MCM) is the consumer software which initiates a Managed Copy. It is either tied

to a player, or it exists as a stand-alone application – e.g., as part of a home media server which includes an

AACS-compliant drive.

Since AACS will support a wide variety of future Managed Copy scenarios, we make some rather limited

assumptions about the nature of the target Managed Copy Output Technologies (MCOTs): other than they are

AACS approved MCOTs, as listed in the AACS license agreement.

5.8.3.1 The Application Layer of the Managed Copy Machine

The application layer of the Managed Copy Machine manages the communication with the Managed Copy

Server, providing that server with the required information in the AACS specified format so that the server can

return the Managed Copy offers to the consumer. For this reason, the application layer shall be provided in all

products which support AACS Managed Copy. The application layer may be implemented by launching a

browser on the Request Offers response.

This application layer of the Managed Copy Machine is what is optionally launched by an AACS-compliant

player.

5.8.3.2 The AACS Layer of the Managed Copy Machine

This component of the Managed Copy Machine is required if binding of the content to the media takes place in

the consumer product. Otherwise, it is not required.

If binding of the content is performed on separate machine from where the permission is granted, then a secure

means of communication shall be established between these two entities. This communication is described in

detail in Section 5.7.

5.8.4 MCOT ID Considerations

As discussed above, the MCOT ID can possess both a major and multiple minor components. AACS assigns the

major part of the ID to the MCOT. The MCOT provider is free to define minor codes associated with its major

ID. These minor ID codes need not be communicated to AACS except under conditions where at least one

major/minor MCOT ID code combination is for some reason no longer required to be included in any offer.

This could occur in cases where the ID is being suspended, de-listed, or for some other reason the MCOT

provider wanted to discontinue service. Note that Bound Copy Methods share a common major ID, and AACS

LA will assign the corresponding minor-IDs.

An MCOT provider may choose to have a single major ID and a single minor ID code. There are, however, two

reasons why they might consider defining more than one minor ID:

1. If the MCOT is expressed in different product types with very different functional characteristics, there

is no chance of confusion--in fact, it might even be clearer--if those different product types use

different MCOT minor ID codes. For example, CPRM for DVD and CPRM for SD Card are

sufficiently different that they might choose to use different MCOT minor IDs.

2. Even if one has functionally equivalent products, if they are provided on different platforms with

different implementations, one might consider using a separate MCOT minor ID for each

implementation. For example, one might have a DRM client with both a Windows and a Linux

implementation. The important consideration is how likely it is for a break in one implementation to

lead immediately to a break in the other implementation. If such a cascade of breaks is unlikely, one

could get into a situation where the implementation on one platform is still valid, but the

implementation on the other platform has to be temporarily suspended from the mandatory MCOT list.

If the two platforms were not differentiated with separate MCOT minor IDs, then a temporary

suspension of the major MCOT ID would suspend all uses of the MCOT on all platforms for that

MCOT, and the MCOT provider would need to request a new major MCOT ID from AACS in order to

continue operations on the unbroken platform. If the platforms had different MCOT minor IDs from

the start, this step could be avoided. (Observe that the guidelines for two platforms having different

MCOT minor IDs are very similar to the guidelines for an AACS player implemented on two

platforms to have different sets of proactive renewal device keys.)

If a particular MCOT major/minor ID combination is no longer required to be included in an offer, then it is

necessary for the MCOT provider to identify to AACS the entire list of minor ID codes used. This allows offers

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 56

to be adjusted if necessary, and for Managed Copy Servers to perform filtering of affected offers appropriately.

For additional information, please refer to Appendices A and C and Section 5.5.2.

5.8.5 The MCOT Transcryptor

Once permission has been granted to perform a Managed Copy, a rebinding operation can take place. If this

transcription and rebinding occurs on the target device, an MCOT transcryptor is required. This is a software

component which knows how to take decrypted AACS Content and re-encrypt it in the approved MCOT,

mapping rights correctly, according to the AACS Compliance Rules.

AACS places no requirements on how players, Managed Copy Machines and MCOT transcryptors interoperate.

However, it is assumed that a consumer may have multiple MCOTs on their Licensed Product. This leads to

two general architectures:

Á An optional player tied to a single Managed Copy Machine, which in turn is tied to a single MCOT

transcryptor.

Á An optional player tied to a single Managed Copy Machine, which in turn supports multiple MCOT

transcryptors.

The second model would appear to be more consumer friendly, but we have defined an architecture which

supports both models.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 57

A Appendix
Managed Copy Offer XML Schema

<?xml version ="1.0" encoding ="UTF- 8" ?>

<xs:schema targetNamespace ="http://www.aacsla.com/2006/02/managedOffer"

 xmlns:xs ="http://www.w3.org/2001/XMLSchema"

 xmlns:tns ="http://www.aacsla.com/2006/02/managedOffer"

 elementFormDefault ="qualified" >

 <xs:element name="offers" >

 <xs:complexType >

 <xs:sequence >

 <xs: element name="offersSignedContent" >

 <xs:complexType >

 <xs:sequence >

 <xs:element ref ="tns:offer"

 minOccurs ="1" maxOccurs ="256" />

 <xs:element ref ="tns:render"

 minOccurs ="0" maxOccurs ="2" />

 <xs:element ref ="tns:sessionId"

 minOccurs ="1" maxOccurs ="1" />

 <xs:element ref ="tns:mcmNonce"

 minOccurs ="1" maxOccurs ="1" />

 <xs:element ref ="tns:ccid"

 minOccurs ="1" maxOccurs ="1" />

 <xs:element ref ="tns:cid"

 minOccurs ="1" maxOccurs ="1" />

 <xs:element ref ="serialNumber"

 minOccurs ="0" maxOccurs ="1" />

 <xs:element ref ="AACSObject Attributes "

 minOccurs =" 0" maxOccurs ="1" />

 </ xs:sequence >

 </ xs:complexType >

 </ xs:element >

 <xs:element ref ="tns:MCScert" minOccurs ="1"

 maxOccurs ="1" />

 <xs:element ref ="tns:signature" minOccurs ="1"

 maxOccurs ="1" />

 </ xs:sequence >

 <xs:attribute name="MKB" use ="optional" type ="xs:string" />

 <xs:attribute name="version" use ="required"

 type ="xs:decimal" />

 </ xs:complexType >

 </ xs:element >

 <xs:element name="offer" >

 <xs:complexType >

 <xs:sequence >

 <xs:element ref ="tns:MCUi" minOccurs ="1"

 maxOccurs ="1" />

 <xs:element ref ="tns:title" minOccurs ="1"

 maxOccurs ="1" />

 <xs:element ref ="tns: abstract" minOccurs ="1"

 maxOccurs ="1" />

 <xs:element ref ="tns:description" minOccurs ="1"

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 58

 maxOccurs ="1" />

 <xs:element ref ="tns:image" minOccurs ="0"

 maxOccurs ="1" />

 <xs:element ref ="tns:ISO639LanguageCode" minOccurs ="0"

 maxOccurs ="1" />

 <xs:element ref ="tns:price" minOccurs ="0"

 maxOccurs ="1" />

 <xs:element ref ="tns:serialNum berRequired"

 minOccurs ="1" maxOccurs ="1" />

 <xs:element ref ="tns:financialApplication"

 minOccurs ="1" maxOccurs ="unbounded" />

 <xs:element ref ="tns:financialHTMLURL" minOccurs ="1"

 maxOccurs ="1" />

 <xs:element ref ="tns:dealManifest"

 minOccurs ="0" maxOccurs ="1" />

 <xs:element ref ="tns:offerDetails" />

 </ xs:sequence >

 <xs:attribute name="withheld" use ="optional"

 type ="xs:boolean" />

 </ xs:complexType >

 </ xs:element >

 <xs:element name="serialNumberStatus" >

 <xs:simpleType >

 <xs:restriction base ="xs:string" >

 <xs:enumeration value ="valid" />

 <xs:enumeration value ="i nvalid" />

 <xs:enumeration value ="used" />

 </ xs:restriction >

 </ xs:simpleType >

 </ xs:element >

 <xs:element name="dealManifest" >

 <xs:complexType >

 <xs:sequence >

 <xs:any namespace ="##other" proces sContents ="lax" />

 </ xs:sequence >

 </ xs:complexType >

 </ xs:element >

 <xs:element name="MCUi" type ="xs:string" />

 <xs:element name="image" >

 <xs:complexType >

 <xs:sequence >

 <xs :element ref ="tns:url" minOccurs ="1"

 maxOccurs ="1" />

 <xs:element ref ="tns:title" minOccurs ="1"

 maxOccurs ="1" />

 </ xs:sequence >

 </ xs:complexType >

 </ xs:element >

 <xs:element name="url" type ="xs:anyURI" />

 <xs:element name="title" final ="restriction" >

 <xs:simpleType >

 <xs:restriction base ="xs:string" >

 <xs:maxLength value ="1024" />

 </ xs:restriction >

 </ xs:simpleType >

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 59

 </ xs:element >

 <xs:element name="description" final ="restriction" >

 <xs:simpleType >

 <xs:restriction base ="xs:string" >

 <xs:maxLength value ="65536" />

 </ xs:restriction >

 </ xs:simpleType >

 </ xs:element >

 <xs:element name="abstract" final ="restriction" >

 <xs:simpleType >

 <xs:restriction base ="xs:string" >

 <xs:maxLength value ="4096" />

 </ xs:restriction >

 </ xs:simpleTy pe>

 </ xs:element >

 <xs:element name="offerDetails" >

 <xs:complexType >

 <xs:sequence >

 <xs:element ref ="tns:videoParameters"

 minOccurs ="0" maxOccurs ="1" />

 <xs:element ref ="tns:audioParameters" minOccurs ="0"

 maxOccurs ="1" />

 <xs:element name="sourceURI" type ="xs:anyURI"

 minOccurs ="0" maxOccurs ="1" />

 <xs:element ref ="tns:mcotInfo" minOccurs ="1" />

 <xs:element ref ="tns:hint" minOccurs ="0" />

 </ xs:sequence >

 </ xs:complexType >

 </ xs:element >

 <xs:element name="videoParameters" >

 <xs:complexType >

 <xs:sequence >

 <xs:element name="videoParametersName"

 type ="xs:string" minOccurs ="0" maxOccurs ="1" />

 <xs:element ref ="tns:minimumHorizontalResolution"

 minOccurs ="0" maxOccurs ="1" />

 <xs:element ref ="tns:maximumHorizontalResolution"

 minOccurs ="0" maxOccurs ="1" />

 <xs:e lement ref ="tns:minimumFrameRate" minOccurs ="0"

 maxOccurs ="1" />

 <xs:element ref ="tns:videoBitrateInfo"

 minOccurs ="0" />

 </ xs:sequence >

 </ xs:complexType >

 </ xs:element >

 <xs:eleme nt name="videoBitrateInfo" >

 <xs:complexType >

 <xs:sequence >

 <xs:element ref ="tns:videoCodecName"

 minOccurs ="0" />

 <xs:element ref ="tns:minimumBitRate" minOccurs ="0"

 maxOccurs ="1" />

 </ xs:sequence >

 </ xs:complexType >

 </ xs:element >

 <xs:element name="audioParameters" >

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 60

 <xs:complexType >

 <xs:sequence >

 <xs:element name="audioParametersName"

 type ="xs:string" minOccurs ="0" maxOccurs ="1" / >

 <xs:element ref ="tns:audioCodecName"

 minOccurs ="0" />

 <xs:element ref ="tns:minimumBitRate" minOccurs ="0"

 maxOccurs ="1" />

 <xs:element ref ="tns:maximumBitRate" minOccurs ="0"

 maxOccurs ="1 " />

 <xs:element ref ="tns:minimumChannels" minOccurs ="0"

 maxOccurs ="1" />

 </ xs:sequence >

 </ xs:complexType >

 </ xs:element >

 <xs:element name="mcotInfo" >

 <xs:complexType >

 <xs:sequence >

 <xs:element ref ="tns:MCOT" />

 <xs:element ref ="tns:mcotMinorCode" minOccurs ="0" />

 <xs:element name="mcotOfferInfo"

 type ="xs:base64Binary" minOccurs ="0"

 maxOccurs ="1" />

 </ xs:sequence >

 </ xs:complexType >

 </ xs:element >

 <xs:element name="render" >

 <xs:complexType >

 <xs:sequence >

 <xs:element ref ="tns:renderURI" minOccurs ="1"

 maxOccurs ="1" />

 <xs:element ref ="tns:rend erType" minOccurs ="1"

 maxOccurs ="1" />

 </ xs:sequence >

 </ xs:complexType >

 </ xs:element >

 <xs:element name="financialApplication" >

 <xs:complexType >

 <xs:sequence >

 <xs:element ref ="tns:financ ialApplicationURI"

 minOccurs ="1" maxOccurs ="1" />

 <xs:element ref ="tns:fiancialApplicationType"

 minOccurs ="1" maxOccurs ="1" />

 </ xs:sequence >

 </ xs:complexType >

 </ xs:element >

 <xs:element name=" renderURI" type ="xs:anyURI" />

 <xs:element name="renderType" type ="xs:string" />

 <xs:element name="videoCodecName" type ="xs:string" />

 <xs:element name="audioCodecName" type ="xs:string" />

 <xs:element name="minimumBitRate" t ype ="xs:decimal" />

 <xs:element name="maximumBitRate" type ="xs:decimal" />

 <xs:element name="minimumHorizontalResolution" type ="xs:decimal" />

 <xs:element name="maximumHorizontalResolution" type ="xs:decimal" />

 <xs:element name="minimum FrameRate" type ="xs:decimal" />

 <xs:element name="minimumChannels" type ="xs:decimal" />

 <xs:element name="price" type ="xs:string" />

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 61

 <xs:element name="financialApplicationURI" type ="xs:anyURI" />

 <xs:element name="fiancialApplicationTyp e" type ="xs:string" />

 <xs:element name="financialHTMLURL" type ="xs:anyURI" />

 <xs:element name="mcmNonce" type ="xs:base64Binary" />

 <xs:element name="MCScert" type ="xs:base64Binary" />

 <xs:element name="sessionId" type ="xs: string" />

 <xs:element name="signature" type ="xs:base64Binary" />

 <xs:element name="hint" type ="xs:string" />

 <xs:element name="MCOT" type ="xs:string" />

 <xs:element name="mcotMinorCode" type ="xs:string" />

 <xs:element name="ISO639 LanguageCode" type ="xs:language" />

 <xs:element name="serialNumberRequired" type ="xs:boolean" />

 <xs:element name="ccid" type ="xs:base64Binary" />

 <xs:element name="cid" type ="xs:string" />

 <xs:element name="AACSObject Attributes " type =" xs:string" />

 <xs:element name="serialNumber" type ="xs:base64Binary" />

</ xs:schema >

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 62

This page is intentionally left blank.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 63

B Appendix
Managed Copy Permission XML Schema

<?xml version ="1.0" ?>

<xs:schema

 targetNamespace ="http://www.aacsla .com/2006/02/managedPermission"

 xmlns:tns ="http://www.aacsla.com/2006/02/managedPermission"

 xmlns:xs ="http://www.w3.org/2001/XMLSchema"

 elementFormDefault ="qualified" >

 <xs:element name="permission" >

 <xs:complexType >

 <xs:sequence >

 <xs:element name="permissionSignedContent" >

 <xs:complexType >

 <xs:sequence >

 <xs:element ref ="tns:status"

 minOccurs ="1" maxOccurs ="1" />

 <xs:element ref ="tns:statusMessage"

 minOccurs ="0" maxOccurs ="1" />

 <xs:element ref ="tns:MCS_MCOTInfo"

 minOccurs ="0" maxOccurs ="1" />

 <xs:element ref =" tns:mcmNonce"

 minOccurs ="1" maxOccurs ="1" />

 <xs:element ref ="tns:MCUi"

 minOccurs ="1" maxOccurs ="1" />

 <xs:element ref ="tns:sessionId"

 minOccurs ="1" maxOccurs ="1" />

 </ xs:sequence >

 </ xs:complexType >

 </ xs:element >

 <xs:element ref ="tns:signature" minOccurs ="1"

 maxOccurs ="1" />

 </ xs:sequence >

 </ xs:complexType >

 </ xs:element >

 <xs:element name="status" type ="xs:nonNegativeInteger" />

 <xs:element name="statusMessage" type ="xs:string" />

 <xs:element name="signature" type ="xs:base64Binary" />

 <xs:element name="MCS_MCOTInfo" t ype ="xs:base64Binary" />

 <xs:element name="mcmNonce" type ="xs:base64Binary" />

 <xs:element name="MCUi" type ="xs:string" />

 <xs:element name="sessionId" type ="xs:string" />

</ xs:schema >

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 64

This page is intentionally left blank.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 65

C Appendix
Managed Copy Web Service Description

<?xml version ="1.0" encoding ="utf - 8" ?>

<wsdl:definitions

 targetNamespace ="http://www.aacsla. com/2006/02/managedCopyService"

 xmlns:soap ="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:soap12 ="http://schemas.xmlsoap.org/wsdl/soap12/"

 xmlns:tns ="http://www.aacsla.com/2006/02/managedCopyService"

 xmlns:xs ="http://www.w3.org/2001/XMLS chema"

 xmlns:aacsmp ="http://www.aacsla.com/2006/02/managedPermission"

 xmlns:aacsoffer ="http://www.aacsla.com/2006/02/managedOffer"

 xmlns:wsdl ="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd ="http://www.aacsla.com/2006/02/managed Offer"

 xmlns:xsd1 ="http://www.aacsla.com/2006/02/managedPermission" >

 <wsdl:documentation >Managed Copy Web Service </ wsdl:documentation >

 <wsdl:types >

 <xs:schema elementFormDefault ="qualified"

targetNamespace ="http://w ww.aacsla.com/2006/02/managedCopyService" >

 <xs:import

namespace ="http://www.aacsla.com/2006/02/managedPermission"

 schemaLocation ="aacs_managed_permission.xsd" />

 <xs:import

 namespace ="http://www.aacsla.com/2006/02/managedOffer"

 schemaLocation ="aacs_copy_offer.xsd" />

 <xs:element name="RequestOffers" >

 <xs:complexType >

 <xs:sequence >

 <xs:element minOccurs ="1" maxOccurs ="1"

 name="cid" type ="xs:string" />

 <xs:element minOccurs ="1" maxOccurs ="1"

 name="ccid" type ="xs:ba se64Binary" />

 <xs:element minOccurs ="0" maxOccurs ="8192"

 name="mcotList"

 type ="tns:ArrayOfMCOTs" />

 <xs:element minOccurs ="0"

 maxOccurs ="1 "

 name=" serialNumber"

 type ="xs:base64Binary" />

 <xs:element minOccurs ="0"

 maxOccurs ="1"

 name="sessionId"

 type ="xs:string" />

 <xs:element minOccurs ="1" maxOccurs ="1"

 name="mcmNonce"

 type ="xs:base64Binary" />

 <xs:element minOccurs ="0" maxOccurs ="128"

 name="LanguageCo de"

 type ="xs:language" />

 <xs:element minOccurs =" 0" maxOccurs ="1"

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 66

 name="AACSObjectAttributes"

 type ="xs:string" />

 </ xs:sequence >

 </ xs:complexType >

 </ xs:element >

 <xs:complexType name="ArrayOfMCOTs" >

 <xs:sequence >

 <xs:element minOccurs ="1" maxOccurs ="1"

 name="mcotID" nillable ="true"

 type ="xs:string" />

 <xs:element minOccurs ="0"

 maxOccurs ="8192"

 name="mcotMinorIDList"

 type ="tns:ArrayOfString" />

 </ xs:sequence >

 </ xs:complexType >

 <xs:complexType name="ArrayOfStr ing" >

 <xs:sequence >

 <xs:element minOccurs ="0" maxOccurs ="unbounded"

 name="string" nillable ="true"

 type ="xs:string" />

 </ xs:sequence >

 </ xs:co mplexType >

 <xs:element name="RequestOffersResponse" >

 <xs:complexType >

 <xs:sequence >

 <xs:element minOccurs ="0" maxOccurs ="1"

 ref ="aa csoffer:offers" />

 </ xs:sequence >

 </ xs:complexType >

 </ xs:element >

 <xs:element name="RequestPermission" >

 <xs:complexType >

 <xs:sequence >

 <xs:element minOccurs ="1" maxOccurs ="1"

 name="MCUi" type ="xs:string" />

 <xs:element minOccurs ="1" maxOccurs ="1"

 name="sessionId " type ="xs:string" />

 <xs:element minOccurs ="0" maxOccurs ="1"

 name="MCM_MCOTInfo"

 type ="xs:base64Binary" />

 <xs:element minOccurs ="1" maxOccurs ="1"

 name="mcmNonce" type ="xs:base64Binary"

/>

 </ xs:sequence >

 </ xs:complexType >

 </ xs:element >

 <xs:element name="RequestPermissionResponse" >

 <xs:complexType >

 <xs:sequence >

 <xs:element minOccurs ="0" maxOccurs ="1"

 ref ='aacsmp:permission' />

 </ xs:sequence >

 </ xs:complexType >

 </ xs:element >

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 67

 </ xs:schema >

 </ wsdl:types >

 <wsdl:message name="RequestOffersSoapIn" >

 <wsdl:part name="parameters" element ="tns:RequestOffers" />

 </ wsdl:message >

 <wsdl:message name="Reques tOffersSoapOut" >

 <wsdl:part name="parameters"

 element ="tns:RequestOffersResponse" />

 </ wsdl:message >

 <wsdl:message name="RequestPermissionSoapIn" >

 <wsdl:part name="parameters" element ="tns:RequestPermission" />

 </ wsdl:message >

 <wsdl:message name="RequestPermissionSoapOut" >

 <wsdl:part name="parameters"

 element ="tns:RequestPermissionResponse" />

 </ wsdl:message >

 <wsdl:portType name="ServiceSoap" >

 <wsdl:operatio n name="RequestOffers" >

 <wsdl:input message ="tns:RequestOffersSoapIn" />

 <wsdl:output message ="tns:RequestOffersSoapOut" />

 </ wsdl:operation >

 <wsdl:operation name="RequestPermission" >

 <wsdl:i nput message ="tns:RequestPermissionSoapIn" />

 <wsdl:output message ="tns:RequestPermissionSoapOut" />

 </ wsdl:operation >

 </ wsdl:portType >

 <wsdl:binding name="ServiceSoap" type ="tns:ServiceSoap" >

 <soap:binding tran sport ="http://schemas.xmlsoap.org/soap/http"

/>

 <wsdl:operation name="RequestOffers" >

 <soap:operation

soapAction ="http://www.aacsla.com/2006/02/managedCopyService/RequestOffers

" style ="document" />

 <wsdl:input >

 <soap:body use ="literal" />

 </ wsdl:input >

 <wsdl:output >

 <soap:body use ="literal" />

 </ wsdl:output >

 </ wsdl:operation >

 <wsdl:operation name="RequestPermission" >

 <soap:operation

soapAction ="http://www.aacsla.com/2006/02/managedCopyService/RequestPermis

sion" style ="document" />

 <wsdl:input >

 <soap:body use ="literal" />

 </ wsdl:input >

 <wsdl:output >

 <soap:body use ="literal" />

 </ wsdl:output >

 </ wsdl:operation >

 </ wsdl:binding >

 <wsdl:binding name="ServiceSoap12" type ="tns:ServiceSoap" >

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 68

 <soap12:binding

 transport ="http://schemas.xmlsoap.org/soap/http" />

 <wsdl:operation name="RequestOffers" >

 <soap12:operation

soapAction ="http://www.aacsla.com/2006/02/managedCopyService/Req uestOffers

" style ="document" />

 <wsdl:input >

 <soap12:body use ="literal" />

 </ wsdl:input >

 <wsdl:output >

 <soap12:body use ="literal" />

 </ wsdl:output >

 </ wsdl:operation >

 <wsdl:operation name="RequestPermission" >

 <soap12:operation

soapAction ="http://www.aacsla.com/2006/02/managedCopyService/RequestPermis

sion" style ="document" />

 <wsdl:input >

 <soap12:body use ="literal" />

 </ wsdl:input >

 <wsdl:output >

 <soap12:body use ="literal" />

 </ wsdl:output >

 </ wsdl:operation >

 </ wsdl:binding >

</ wsdl:defi nitions >

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 69

This page is intentionally left blank.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 71

D Drive Authentication Schema
<?xml version ="1.0" ?>

<xs:schema

 targetNamespace ="http://www.aacsla.com/2006/02/performReadDrive"

 xmlns:tns ="http://www.aacsla.com/2006/02/performReadDrive"

 xml ns:xs ="http://www.w3.org/2001/XMLSchema"

 elementFormDefault ="qualified" >

 <xs:element name="readDrive" >

 <xs:complexType >

 <xs:sequence >

 <xs:element ref ="tns:driveCommand"

 minOccurs ="1" maxOccurs ="1" />

 <xs:element ref ="tns:sessionId"

 minOccurs ="1" maxOccurs ="1" />

 <xs:element ref ="tns:status"

 minOccurs ="1" maxOccurs ="1" />

 <xs:element ref ="tns:serverMessage"

 minOccurs ="0" maxOccur s="1" />

 </ xs:sequence >

 </ xs:complexType >

 </ xs:element >

 <xs:element name="driveCommand" type ="xs:base64Binary" />

 <xs:element name="sessionId" type ="xs:string" />

 <xs:element name="status" type ="xs:string" />

 <xs:element name="serverMessage" type ="xs:base64Binary" />

</ xs:schema >

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 72

This page is intentionally left blank.

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 73

E Drive Authentication Web Service Description (WSDL)
<?xml version ="1.0" encoding ="utf - 8" ?>

<wsdl:definitions

 targetNamespace ="http://www.aacsla.com/2006/02/readDriveService"

 xmlns:soap ="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:soap12 ="http://schema s.xmlsoap.org/wsdl/soap12/"

 xmlns:tns ="http://www.aacsla.com/2006/02/readDriveService"

 xmlns:xs ="http://www.w3.org/2001/XMLSchema"

 xmlns:aacsrd ="http://www.aacsla.com/2006/02/performReadDrive"

 xmlns:wsdl ="http://schemas.xmlsoap.org/wsdl /" >

 <wsdl:documentation >Read Drive Web Service </ wsdl:documentation >

 <wsdl:types >

 <xs:schema elementFormDefault ="qualified"

targetNamespace ="http://www.aacsla.com/2006/02/readDriveService" >

 <xs:import

namespace ="http://www.aacsla.com/2006/02/performReadDrive"

 schemaLocation ="aacs_read_drive.xsd" />

 <xs:element name="performReadDrive" >

 <xs:complexType >

 <xs: sequence >

 <xs:element minOccurs ="1" maxOccurs ="1"

 name="sessionId" type ="xs:string" />

 <xs:element minOccurs ="1" maxOccurs ="1"

 name="driveData" type ="xs:base64Binary"

/>

 <xs:element minOccurs ="1" maxOccurs ="1"

 name="driveMessage"

type ="xs:base64Binary" />

 </ xs:sequence >

 </ xs:complexType >

 </ xs:element >

 <xs:element name="performReadDriveResponse" >

 <xs:complexType >

 <xs:sequence >

 <xs:element minOccurs ="1" maxOccurs ="1"

 ref ="aacsrd:readDrive" />

 </ xs:sequence >

 </ xs:complexType >

 </ xs:element >

 </ xs:schema >

 </ wsdl:types >

 <wsdl:message name="performReadDriveSoapIn" >

 <wsdl:part name="parameters" element ="tns:performReadDrive" />

 </ wsdl:message >

 <wsdl:message name="performReadDriveSoapOut" >

 <wsdl:part name="parameters"

 element ="tns:performReadDriveResponse" />

 </ wsdl:mess age>

 <wsdl:portType name="ServiceSoap" >

 <wsdl:operation name="performReadDrive" >

 <wsdl:input message ="tns:performReadDriveSoapIn" />

Advanced Access Content System: Pre-recorded Video Book

 Final Revision 0.953 Page 74

 <wsdl:output message ="tns:performReadDriveSoapOut" />

 </ wsdl:operati on>

 </ wsdl:portType >

 <wsdl:binding name="ServiceSoap" type ="tns:ServiceSoap" >

 <soap:binding transport ="http://schemas.xmlsoap.org/soap/http"

/>

 <wsdl:operation name="performReadDrive" >

 <soap:operation

soapAction ="http://www.aacsla.com/2006/02/managedCopyService/RequestOffers

" style ="document" />

 <wsdl:input >

 <soap:body use ="literal" />

 </ wsdl:input >

 <wsdl:output >

 <soap:body use ="literal" />

 </ wsdl:output >

 </ wsdl:operation >

 </ wsdl:binding >

 <wsdl:binding name="ServiceSoap12" type ="tns:ServiceSoap" >

 <soap12:binding

 transport ="http://schemas.xmlsoap.org/soa p/http" />

 <wsdl:operation name="performReadDrive" >

 <soap12:operation

soapAction ="http://www.aacsla.com/2006/02/managedCopyService/RequestOffers

" style ="document" />

 <wsdl:input >

 <soap12:body use ="literal" />

 </ wsdl:input >

 <wsdl:output >

 <soap12:body use ="literal" />

 </ wsdl:output >

 </ wsdl:operation >

 </ wsdl:binding >

</ wsdl:definitions >

